Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Environ Res ; 209: 112807, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35093312

RESUMO

The occurrence of microplastics (MPs) in soils can negatively affect soil biodiversity and function. Soil amendments applied to MP-contaminated soil can alter the overall soil properties and enhance its functions and processes. However, little is known about how soil amendments improve the quality of MP-contaminated soils. Thus, the present study used a microcosm experiment to explore the potential effects of four types of biochar on the chemical and microbial properties of low-density polyethylene (LDPE) MP-contaminated soil under both drought and well-watered conditions. The results show that the biochars altered soil pH, electrical conductivity (EC), available phosphorous, and total exchangeable cations (TEC) with some variability depending on the biochar type. Oilseed rape straw (OSR)-derived biochars increased soil pH, EC, and TEC under both water conditions with the highest values of 7.94, 0.54 dS m-1 and 22.0 cmol(+) kg-1, respectively. Soil enzyme activities varied under all treatments; in particular, under drought conditions, the fluorescein diacetate activity increased in soils with high temperature (700 °C) biochar. The application of soft wood pellet biochar (700 °C) to MP-contaminated soil increased urease activity by 146% under well-watered conditions. OSR-derived biochars significantly reduced soil acid phosphatase activity under both water conditions. With biochar supplementation, the diversity indices of the bacterial community increased in well-watered soil but not in soil under drought conditions. The abundance of bacterial phyla, such as Firmicutes, Proteobacteria, Actinobacteria, Dictyoglomi, and Gemmatimonadetes, was relatively high in all treatments. Biochar application resulted in negligible variations in bacterial communities under drought conditions but significant variations under well-watered conditions. The findings of this study imply that biochar can be used as a soil amendment to improve the overall soil quality of MP-contaminated soil, but its impact varies depending on the pyrolysis feedstock and temperature. Thus, selecting a suitable biochar is important for improving the soil quality in MP-contaminated soils.


Assuntos
Plásticos , Poluentes do Solo , Carvão Vegetal , Microplásticos , Solo/química , Poluentes do Solo/análise
2.
Environ Res ; 214(Pt 4): 114072, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35987372

RESUMO

Radioactive elements released into the environment by accidental discharge constitute serious health hazards to humans and other organisms. In this study, three gasified biochars prepared from feedstock mixtures of wood, chicken manure, and food waste, and a KOH-activated biochar (40% food waste + 60% wood biochar (WFWK)) were used to remove cesium (Cs+) and strontium (Sr2+) ions from water. The physicochemical properties of the biochars before and after adsorbing Cs+ and Sr2+ were determined using X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectroscopy, extended X-Ray absorption fine structure (EXAFS) spectroscopy, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDX). The WFWK exhibited the highest adsorption capacity for Cs+ (62.7 mg/g) and Sr2+ (43.0 mg/g) among the biochars tested herein. The removal of radioactive 137Cs and 90Sr exceeded 80% and 47%, respectively, in the presence of competing ions like Na+ and Ca2+. The functional groups present in biochar, including -OH, -NH2, and -COOH, facilitated the adsorption of Cs+ and Sr2+. The Cs K-edge EXAFS spectra revealed that a single coordination shell was assigned to the Cs-O bonding at 3.11 Å, corresponding to an outer-sphere complex formed between Cs and the biochar. The designer biochar WFWK may be used as an effective adsorbent to treat radioactive 137Cs- and 90Sr-contaminated water generated during the operation of nuclear power plants and/or unintentional release, owing to the enrichment effect of the functional groups in biochar via alkaline activation.


Assuntos
Eliminação de Resíduos , Poluentes Químicos da Água , Adsorção , Césio/química , Carvão Vegetal , Alimentos , Humanos , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier , Estrôncio , Água , Poluentes Químicos da Água/análise
3.
J Environ Manage ; 234: 52-64, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30616189

RESUMO

Soil degradation has become an emerging global problem limiting sustainable upland crop production. Soil erosion, soil acidity, low fertility, inorganic/organic contamination, and salinization challenge food security and lead to severe economic constraints. Therefore, a new research agenda to develop cost-beneficial amendments for improving upland soil quality and productivity is urgently required. Biochar has been used in recent years to mitigate the problems mentioned above. Application of biochar improves the upland soil quality through significant changes in soil physicochemical and biological properties, thereby substantially increasing crop yield. This review article aims to discuss the effects of biochar on upland soil quality and productivity based on biochar-soil interactions. The yield of various upland crops can be enhanced by biochar-induced increases of nutrient availability and topsoil retention/recovery. Furthermore, biochar can assist in controlling unsuitable soil acidity/alkalinity/salinity and remediating a contaminated soil while increasing the retention of soil organic carbon, water content, and thereby high crop yield. Biochar is strongly recommended as one of the best management practices to meet the challenges of upland agriculture. However, the properties of biochar and soil type should be considered carefully prior to application.


Assuntos
Agricultura , Carvão Vegetal , Produtos Agrícolas , Solo
4.
Sci Total Environ ; 924: 171602, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38461987

RESUMO

Microplastic (MP) pollution is a growing global issue due to its potential threat to ecosystem and human health. Low-density polyethylene (LDPE) MP is the most common type of plastics polluting agricultural soils, negatively affecting soil-microbial-plant systems. However, the effects of LDPE MPs on the carbon (C): nitrogen (N): phosphorus (P) of soil-microbial-plant systems have not been well elucidated. Thus, we conducted a pot experiment with varying LDPE MP concentrations (w/w) (control without MPs; 0.2 % MPs (PE1); 5 % MPs (PE2); and 10 % MPs (PE3)) to study their effects on soil-microbial-plant C-N-P stoichiometry. Soil C:N ratio increased 2.3 and 3.4 times in PE2 and PE3, respectively. Soil C:P ratio increased 2.2 and 3.6 times in PE2 and PE3, respectively. Soil microbial C:N ratios decreased by 46.2 % in PE1, while C:P ratios decreased by 59.2, 38.6, and 67.9 % in PE1, PE2, and PE3, respectively. Soil microbial N:P ratio decreased in PE1 (17.2) and PE3 (59.1 %). MPs increased shoot C content and C:N ratios, particularly at the 5 % MP addition rate. MP addition altered dissolved organic C, N, and P concentrations, depending on the MP addition rate. Microbial community responses to MP exposure were complex, leading to variable effects on different microbial groups at different MP addition rates. Structural equation modeling showed that MP addition had a direct positive effect (ß = 0.96) on soil C-N-P stoichiometry and a direct negative effect (ß = -1.34) on microbial C-N-P stoichiometry. These findings demonstrate the complex interactions between MPs, soil microorganisms, and nutrient dynamics, highlighting the need for further research to better understand the ecological implications of MP pollution in terrestrial ecosystems.


Assuntos
Microbiota , Verduras , Humanos , Plásticos , Microplásticos , Ecossistema , Solo , Polietileno
5.
Plants (Basel) ; 12(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36840252

RESUMO

Tea plants are widely planted in tropical and subtropical regions globally, especially in southern China. The high leaching and strong soil acidity in these areas, in addition to human factors (e.g., tea picking and inappropriate fertilization methods) aggravate the lack of nutrients in tea garden soil. Therefore, improving degraded tea-growing soil is urgently required. Although the influence of biological factors (e.g., tea plant variety) on soil nutrients has been explored in the existing literature, there are few studies on the inhibition of soil nutrient degradation using different tea plant varieties. In this study, two tea plant varieties with different nutrient efficiencies (high-nutrient-efficiency variety: Longjing43 (LJ43); low-nutrient-efficiency variety: Liyou002 (LY002)) were studied. Under a one-side fertilization mode of two rows and two plants, the tea plant growth status, soil pH, and available nutrients in the soil profiles were analyzed, aiming to reveal the improvement of degraded soil using different tea varieties. The results showed that (1) differences in the phenotypic features of growth (such as dry tea yield, chlorophyll, leaf nitrogen (N), phosphorus (P), and potassium (K) content) between the fertilization belts in LJ43 (LJ43-near and LJ43-far) were lower than those in LY002. (2) RDA results showed that the crucial soil nutrient factors which determine the features of tea plants included available P, slowly available K, and available K. Moreover, acidification was more serious near the fertilization belt. The pH of the soil near LJ43 was higher than that near LY002, indicating an improvement in soil acidification. (3) Soil nutrient heterogeneity between fertilization belts in LJ43 (LJ43-near and LJ43-far) was lower than in LY002. In conclusion, the long-term one-side fertilization mode of two rows and two plants usually causes spatial heterogeneities in soil nutrients and aggravates soil acidification. However, LJ43 can reduce the nutrient heterogeneities and soil acidification, which is probably due to the preferential development of secondary roots. These results are helpful in understanding the influence of tea plant variety on improving soil nutrients and provide a relevant scientific reference for breeding high-quality tea varieties, improving the state of degraded soil and maintaining soil health.

6.
Sci Total Environ ; 881: 163311, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37044338

RESUMO

One-third of the annual food produced globally is wasted and much of the food waste (FW) is unutilized; however, FW can be valorized into value-added industrial products such as biofuel, chemicals, and biomaterials. Converting FW into soil amendments such as compost, vermicompost, anaerobic digestate, biofertilizer, biochar, and engineered biochar is one of the best nutrient recovery and FW reuse approaches. The soil application of FW-based amendments can improve soil fertility, increase crop production, and reduce contaminants by altering soil's chemical, physical, microbial, and faunal properties. However, the efficiency of the amendment for improving ecosystem sustainability depends on the type of FW, conversion method, application rate, soil type, and crop type. Engineered biochar/biochar composite materials produced using FW have been identified as promising amendments for soil remediation, reducing commercial fertilizer usage, and increasing soil nutrient use efficiency. The development of quality standards and implementation of policies and regulations at all stages of the food supply chain are necessary to manage (reduce and re-use) FW.


Assuntos
Eliminação de Resíduos , Solo , Solo/química , Alimentos , Ecossistema , Carvão Vegetal/química , Produção Agrícola
7.
J Hazard Mater ; 441: 129904, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36096061

RESUMO

As an important subtopic within phytoremediation, hyperaccumulators have garnered significant attention due to their ability of super-enriching heavy metals. Identifying the factors that affecting phytoextraction efficiency has important application value in guiding the efficient remediation of heavy metal contaminated soil. However, it is challenging to identify the critical factors that affect the phytoextraction of heavy metals in soil-hyperaccumulator ecosystems because the current projections on phytoremediation extrapolations are rudimentary at best using simple linear models. Here, machine learning (ML) approaches were used to predict the important factors that affecting phytoextraction efficiency of hyperaccumulators. ML analysis was based on 173 data points with consideration of soil properties, experimental conditions, plant families, low-molecular-weight organic acids from plants, plant genes, and heavy metal properties. Heavy metal properties, especially the metal ion radius, were the most important factors that affect heavy metal accumulation in shoots, and the plant family was the most important factor that affect the bioconcentration factor, metal extraction ratio, and remediation time. Furthermore, the Crassulaceae family had the highest potential as hyperaccumulators for phytoremediation, which was related to the expression of genes encoding heavy metal transporting ATPase (HMA), Metallothioneins (MTL), and natural resistance associated macrophage protein (NRAMP), and also the secretion of malate and threonine. New insights into the effects of plant characteristics, experimental conditions, soil characteristics, and heavy metal properties on phytoextraction efficiency from ML model interpretation could guide the efficient phytoremediation by identifying the best hyperaccumulators and resolving its efficient remediation mechanisms.


Assuntos
Metais Pesados , Poluentes do Solo , Adenosina Trifosfatases/metabolismo , Biodegradação Ambiental , Ecossistema , Aprendizado de Máquina , Malatos/metabolismo , Metais Pesados/análise , Plantas/metabolismo , Solo , Poluentes do Solo/metabolismo , Treonina/metabolismo
8.
Chemosphere ; 331: 138804, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37137390

RESUMO

Chromium (Cr) affects human health if it accumulates in organs to elevated concentrations. The toxicity risk of Cr in the ecosphere depends upon the dominant Cr species and their bioavailability in the lithosphere, hydrosphere, and biosphere. However, the soil-water-human nexus that controls the biogeochemical behaviour of Cr and its potential toxicity is not fully understood. This paper synthesizes information on different dimensions of Cr ecotoxicological hazards in the soil and water and their subsequent effects on human health. The various routes of environmental exposure of Cr to humans and other organisms are also discussed. Human exposure to Cr(VI) causes both carcinogenic and non-carcinogenic health effects via complicated reactions that include oxidative stress, chromosomal and DNA damage, and mutagenesis. Chromium(VI) inhalation can cause lung cancer; however, incidences of other types of cancer following Cr(VI) exposure are low but probable. The non-carcinogenic health consequences of Cr(VI) exposure are primarily respiratory and cutaneous. Research on the biogeochemical behaviour of Cr and its toxicological hazards on human and other biological routes is therefore urgently needed to develop a holistic approach to understanding the soil-water-human nexus that controls the toxicological hazards of Cr and its detoxification.


Assuntos
Solo , Água , Humanos , Cromo/toxicidade , Cromo/análise , Exposição Ambiental , Carcinógenos/toxicidade , Carcinogênese
9.
Sci Rep ; 13(1): 16276, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770500

RESUMO

Microplastic (MP) pollution in agricultural soils, resulting from the use of plastic mulch, compost, and sewage sludge, jeopardizes the soil microbial populations. However, the effects of MPs on soil chemical properties and microbial communities remain largely unknown. Here, we investigated the effects of different concentration levels (0, 0.1, 1, 3, 5, and 7%; w:w) of low-density polyethylene (LDPE) MPs on the chemical properties and bacterial communities of agricultural soil in an incubation study. The addition of LDPE MPs did not drastically change soil pH (ranging from 8.22 to 8.42). Electrical conductivity increased significantly when the LDPE MP concentrations were between 1 and 7%, whereas the total exchangeable cations (Na+, K+, Mg2+, and Ca2+) decreased significantly at higher LDPE MP concentrations (3-7%). The highest available phosphorus content (2.13 mg kg-1) was observed in 0.1% LDPE MP. Bacterial richness (Chao1 and Ace indices) was the lowest at 0.1% LDPE MP, and diversity indices (Shannon and Invsimpson) were higher at 0 and 1% LDPE MP than at other concentrations. The effect of LDPE MP concentrations on bacterial phyla remained unchanged, but the bacterial abundance varied. The relative abundance of Proteobacteria (25.8-33.0%) was the highest in all treatments. The abundance of Acidobacteria (15.8-17.2%) was also high, particularly in the 0, 0.1, and 1% LDPE MPs. With the increase in LDPE MP concentration, the abundance of Actinobacteria gradually increased from 7.80 to 31.8%. Our findings suggest that different MP concentration levels considerably alter soil chemical properties and microbial composition, which may potentially change the ecological functions of soil ecosystems.


Assuntos
Microbiota , Microplásticos , Solo/química , Plásticos/farmacologia , Polietileno/farmacologia , Bactérias
10.
Environ Pollut ; 320: 121020, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36632970

RESUMO

Metabolomic and gut microbial responses of soil fauna to environmentally relevant concentrations of microplastics indicate the potential molecular toxicity of microplastics; however, limited data exist on these responses. In this study, earthworms (Eisenia fetida) were exposed to spherical (25-30 µm diameter) polystyrene microplastic-contaminated soil (0.02%, w:w) for 14 days. Changes in weight, survival rate, intestinal microbiota and metabolic responses of the earthworms were assessed. The results showed that polystyrene microplastics did not influence the weight, survival rate, or biodiversity of the gut microbiota, but significantly decreased the relative abundance of Bacteroidetes at the phylum level. Moreover, polystyrene microplastics disturbed the osmoregulatory metabolism of earthworms, as indicated by the significantly decreased betaine, myo-inositol and lactate, and increased 2-hexyl-5-ethyl-furan-3-sulfonic acid at the metabolic level. This study provides important insights into the molecular toxicity of environmentally relevant concentrations of polystyrene microplastics on soil fauna.


Assuntos
Oligoquetos , Poluentes do Solo , Animais , Microplásticos/toxicidade , Microplásticos/metabolismo , Plásticos/metabolismo , Oligoquetos/metabolismo , Poliestirenos/toxicidade , Poliestirenos/metabolismo , Solo , Poluentes do Solo/análise
11.
J Hazard Mater ; 442: 130034, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36206716

RESUMO

The toxicity of nanoplastics (NPs) at relatively low concentrations to soil fauna at different organismal levels is poorly understood. We investigated the responses of earthworm (Eisenia fetida) to polystyrene NPs (90-110 nm) contaminated soil at a relatively low concentration (0.02 % w:w) based on multi-omics, morphological, and intestinal microorganism analyses. Results showed that NPs accumulated in earthworms' intestinal tissues. The NPs damaged earthworms' digestive and immune systems based on injuries of the intestinal epithelium and chloragogenous tissues (tissue level) and increased the number of changed genes in the digestive and immune systems (transcriptome level). The NPs reduced gut microorganisms' diversity (Shannon index) and species richness (Chao 1 index). Proteomic, transcriptome, and histopathological analyses showed that earthworms suffered from oxidative and inflammatory stresses. Moreover, NPs influenced the osmoregulatory metabolism of earthworms as NPs damaged intestinal epithelium (tissue level), increased aldosterone-regulated sodium reabsorption (transcriptome level), inositol phosphate metabolism (proteomic level) and 2-hexyl-5-ethyl-furan-3-sulfonic acid, and decreased betaine and myo-inositol concentrations (metabolic level). Transcriptional-metabolic and transcriptional-proteomic analyses revealed that NPs disrupted earthworm carbohydrate and arachidonic acid metabolisms. Our multi-level investigation indicates that NPs at a relatively low concentration induced toxicity to earthworms and suggests that NPs pollution has significant environmental toxicity risks for soil fauna.


Assuntos
Oligoquetos , Poluentes do Solo , Animais , Oligoquetos/metabolismo , Microplásticos/toxicidade , Poluentes do Solo/metabolismo , Poliestirenos/metabolismo , Proteômica , Betaína/metabolismo , Aldosterona/análise , Aldosterona/metabolismo , Ácido Araquidônico/metabolismo , Solo , Sódio , Ácidos Sulfônicos , Furanos , Carboidratos , Fosfatos de Inositol/metabolismo
12.
Adv Colloid Interface Sci ; 297: 102537, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34624725

RESUMO

Poly- and perfluoroalkyl substances (PFAS) present globally in drinking-, waste-, and groundwater sources are contaminants of emerging concern due to their long-term environmental persistence and toxicity to organisms, including humans. Here we review PFAS occurrence, behavior, and toxicity in various water sources, and critically discuss their removal via mineral adsorbents, including natural aluminosilicate clay minerals, oxidic clays (Al, Fe, and Si oxides), organoclay minerals, and clay-polymer and clay­carbon (biochar and graphene oxide) composite materials. Among the many remediation technologies, such as reverse osmosis, adsorption, advanced oxidation and biologically active processes, adsorption is the most suitable for PFAS removal in aquatic systems. Treatment strategies using clay minerals and oxidic clays are inexpensive, eco-friendly, and efficient for bulk PFAS removal due to their high surface areas, porosity, and high loading capacity. A comparison of partition coefficient values calculated from extracted data in published literature indicate that organically-modified clay minerals are the best-performing adsorbent for PFAS removal. In this review, we scrutinize the corresponding plausible mechanisms, factors, and challenges affecting the PFAS removal processes, demonstrating that modified clay minerals (e.g., surfactant, amine), including some commercially available products (e.g., FLUORO-SORB®, RemBind®, matCARE™), show good efficacy in PFAS remediation in contaminated media under field conditions. Finally, we propose future research to focus on the challenges of using clay-based adsorbents for PFAS removal from contaminated water due to the regeneration and safe-disposal of spent clay adsorbents is still a major issue, whilst enhancing the PFAS removal efficiency should be an ongoing scientific effort.

13.
J Hazard Mater ; 415: 125464, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-33730647

RESUMO

Excess phosphorous (P) in aquatic systems causes adverse environmental impacts including eutrophication. This study fabricated Fe(III) loaded chitosan-biochar composite fibers (FBC-N and FBC-C) from paper mill sludge biochar produced under N2 (BC-N) and CO2 (BC-C) conditions at 600 °C for adsorptive removal of phosphate from water. Investigations using SEM/EDX, XPS, Raman spectroscopy, and specific surface area measurement revealed the morphological and physico-chemical characteristics of the adsorbent. The Freundlich isotherm model well described the phosphate adsorption on BC-N, while the Redlich-Peterson model best fitted the data of three other adsorbents. The maximum adsorption capacities were 9.63, 8.56, 16.43, and 19.24 mg P g-1 for BC-N, BC-C, FBC-N, and FBC-C, respectively, indicating better adsorption by Fe(III) loaded chitosan-biochar composite fibers (FBCs) than pristine biochars. The pseudo-first-order kinetic model suitably explained the phosphate adsorption on BC-C and BC-N, while data of FBC-N and FBC-C followed the pseudo-second-order and Elovich model, respectively. Molecular level observations of the P K-edge XANES spectra confirmed that phosphate associated with iron (Fe) minerals (Fe-P) were the primary species in all the adsorbents. This study suggests that FBCs hold high potential as inexpensive and green adsorbents for remediating phosphate in contaminated water, and encourage resource recovery via bio-based management of hazardous waste.


Assuntos
Quitosana , Poluentes Químicos da Água , Adsorção , Carvão Vegetal , Compostos Férricos , Cinética , Fosfatos , Água , Poluentes Químicos da Água/análise
14.
J Hazard Mater ; 398: 123096, 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-32768840

RESUMO

This study mechanistically addressed for the first time, the contradiction between the application of many biochars to paddy soil and increased arsenic (As) release as employed by most of previous studies. Three types of biochar containing natural and chemical forms of Si: (i) unmodified rice husk biochar (RHBC), (ii) RHBC modified with Si fertilizer (Si-RHBC), and (iii) RHBC modified with nanoparticles of montmorillonite clay (NM-RHBC) were applied in As-contaminated paddy soil to examine their potential to control the mobility of As in the soil-microbe-rice system. Both Si-RHBC and NM-RHBC decreased As concentration in porewater by 40-65 %, while RHBC decreased by 30-44 % compared to biochar unamended soil from tillering to maturing stage. At tillering stage, RHBC, Si-RHBC and NM-RHBC amendments significantly decreased As(III) concentration in the rice rhizosphere by 57, 76 and 73 %, respectively compared to the control soil. The immobilization of As is due to: (i) lowering of microbe mediated As release from iron minerals, (ii) oxidation of As(III) to As(V) by aioA gene, and (iii) adsorption on a Si-ferrihydrite complex. The decrease of more toxic As(III) and its oxidation to less mobile As(V) by Si-rich biochar amendments is a promising As detoxification phenomenon in the rice rhizosphere.


Assuntos
Arsênio , Oryza , Poluentes do Solo , Arsênio/análise , Carvão Vegetal , Rizosfera , Dióxido de Silício , Solo , Poluentes do Solo/análise
15.
Environ Int ; 134: 105046, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31731004

RESUMO

Soil contamination by potentially toxic elements (PTEs) has led to adverse environmental impacts. In this review, we discussed remediation of PTEs contaminated soils through immobilization techniques using different soil amendments with respect to type of element, soil, and amendment, immobilization efficiency, underlying mechanisms, and field applicability. Soil amendments such as manure, compost, biochar, clay minerals, phosphate compounds, coal fly ash, and liming materials are widely used as immobilizing agents for PTEs. Among these soil amendments, biochar has attracted increased interest over the past few years because of its promising surface properties. Integrated application of appropriate amendments is also recommended to maximize their use efficiency. These amendments can reduce PTE bioavailability in soils through diverse mechanisms such as precipitation, complexation, redox reactions, ion exchange, and electrostatic interaction. However, soil properties such as soil pH, and clay, sesquioxides and organic matter content, and processes, such as sorption/desorption and redox processes, are the key factors governing the amendments' efficacy for PTEs immobilization in soils. Selecting proper immobilizing agents can yield cost-effective remediation techniques and fulfill green and sustainable remediation principles. Furthermore, long-term stability of immobilized PTE compounds and the environmental impacts and cost effectiveness of the amendments should be considered before application.


Assuntos
Solo , Disponibilidade Biológica , Carvão Vegetal , Poluição Ambiental , Recuperação e Remediação Ambiental , Metais Pesados , Poluentes do Solo
16.
Environ Int ; 131: 105015, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31369978

RESUMO

The accumulation of potentially toxic elements (PTEs) in aquatic ecosystems has become a global concern, as PTEs may exert a wide range of toxicological impacts on aquatic organisms. Submerged plants and the microorganisms attached to their surfaces, however, have displayed great potential as a means of coping with such pollution. Therefore, it is crucial to understand the transport pathways of PTEs across sediment and organisms as well as their accumulation mechanisms in the presence of submerged plants and their biofilms. The majority of previous studies have demonstrated that submerged plants and their biofilms are indicators of PTE pollution in the aquatic environment, yet relatively little is known about PTE accumulation in epiphytic biofilms. In this review, we describe the transport pathways of PTEs in the aquatic environment in order to offer remarkable insights into bioaccumulation mechanisms in submerged plants and their biofilms. Based on the literature cited in this review, the roles of epiphytic biofilms in bioaccumulation and as an indicator of ecosystem health are discussed.


Assuntos
Bioacumulação , Plantas/efeitos dos fármacos , Biofilmes , Humanos
17.
Environ Int ; 131: 104937, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31284110

RESUMO

Particulate plastics in the terrestrial and aquatic environments are small plastic fragments or beads (i.e., 5 mm down to the nanometre range). They have been frequently referred to as 'micro-plastics' or 'nano-plastics'. Research has identified particulate plastics as a vector for toxic trace elements in the environment. The adsorption of toxic trace elements by particulate plastics may be facilitated by their high surface area and functionalized surfaces (e.g., through the attachment of natural organic matter). Other factors, such as environmental conditions (e.g., pH and water salinity), surface charge, and trace element oxidation status, also influence the adsorption of trace elements onto particulate plastics. Because of their small size and persistence, particulate plastics and the associated toxic trace elements are readily ingested and accumulated in many terrestrial and aquatic organisms. Thus, these plastics can have severe environmental consequences, such as the development of metal toxicity, within aquatic and terrestrial organisms. Humans could also become exposed to particulate plastics through food chain contamination and airborne ingestion. This review provides an overview of the sources of particulate plastics in the environment. To this end, we describe particulate plastics made of synthetic polymers, their origin, and characteristics with emphasis on how particulate plastics and associated toxic trace elements contaminate terrestrial and aquatic ecosystems. Future research needs and strategies are discussed to help reduce the environmental risks of particulate plastics as a potent vector for the transportation of toxic trace elements.


Assuntos
Organismos Aquáticos/metabolismo , Bioacumulação , Exposição Ambiental , Material Particulado/química , Plantas/metabolismo , Plásticos/química , Oligoelementos/toxicidade , Animais , Humanos , Fenômenos Fisiológicos Vegetais , Medição de Risco , Oligoelementos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA