Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Drug Dev Res ; 83(4): 952-960, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35132666

RESUMO

Evidence has demonstrated that Daphnetin has antiangiogenesis activity, indicating it might be a new multi-targeted medication for cancer therapy. Here, we aimed to reveal Daphnetin role in hepatocellular carcinoma (HCC) progression and the underlying mechanism. Huh7 and SK-HEP-1, two human HCC cell lines were used in this study. MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), colony formation, flow cytometry, and tumor-bearing experiments were applied to evaluate the effects of different concentrations of Daphnetin on cell viability, apoptosis, cell cycle, and in vivo tumor formation, respectively. Real-time PCR (Polymerase Chain Reaction)and western blotting were applied to measure the mRNA and protein levels of ß-catenin. We observed that Daphnetin inhibited cell viability and tumorigenesis, promoted cell apoptosis, and induced a G1 phase arrest in a dose-dependent manner in both Huh7 and SK-HEP-1 cells, which were rescued by SKL2001, an activator of the Wnt/ß-catenin signaling. Taken together, this study reveals that Daphnetin exerts an antitumor role in HCC through the inactivation of Wnt/ß-catenin signaling.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Apoptose , Carcinoma Hepatocelular/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Umbeliferonas , Via de Sinalização Wnt/genética , beta Catenina/genética , beta Catenina/metabolismo , beta Catenina/farmacologia
2.
Exp Ther Med ; 27(2): 59, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38234613

RESUMO

Myocardial ischemia/reperfusion (I/R) injury is a clinical challenge in the treatment of ischemic heart disease. The present study aimed to establish a hypoxia/reoxygenation (H/R)-induced H9c2 cell model to explore the role and mechanism of chemokine-like factor 1 (CKLF1) in myocardial I/R injury. First, CKLF1 expression was measured in H/R-induced H9c2 cells by reverse transcription-quantitative PCR and western blotting. Subsequently, after CKLF1 silencing, cell viability and apoptosis were evaluated by Cell Counting Kit-8 assay and flow cytometry. In addition, 2,7-dichlorodihydrofluorescein diacetate staining was used to assess the levels of cellular reactive oxygen species. Additionally, the levels of superoxide dismutase, glutathione peroxidase and malondialdehyde, and the contents of inflammatory factors IL-6, IL-1ß and TNF-α were detected using corresponding commercially available kits. Western blotting was used to examine the expression levels of proteins involved in the NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome. The JASPAR database predicted that forkhead box protein C1 (FOXC1) would bind to the CKLF1 promoter region, and dual luciferase and chromatin immunoprecipitation assays were performed to verify it. Subsequently, FOXC1 overexpression and CKLF1 silencing were used to clarify the regulatory mechanism of FOXC1 on CKLF1 in H/R-induced H9c2 cells. The results revealed that CKLF1 expression was markedly enhanced in H/R-stimulated H9c2 cells. CKLF1 knockdown enhanced the viability and inhibited the apoptosis of H9c2 cells exposed to H/R. Moreover, the oxidative stress and inflammation induced by H/R were alleviated following CKLF1 silencing. CKLF1 knockdown also inhibited NLRP3 inflammasome activation. Furthermore, FOXC1 bound to the CKLF1 promoter region to upregulate CKLF1 expression, and FOXC1 overexpression alleviated the effects of CKLF1 knockdown on H9c2 cell damage induced by H/R via activation of the NLRP3 inflammasome. In conclusion, CKLF1 transcriptionally activated by FOXC1 may promote H/R-induced oxidative stress and inflammation in H9c2 cells via NLRP3 inflammasome activation.

3.
Micromachines (Basel) ; 15(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38258229

RESUMO

Crystal orientation significantly influences deformation during nanopolishing due to crystal anisotropy. In this work, molecular dynamics (MD) simulations were employed to examine the process of surface generation and subsurface damage. We conducted analyses of surface morphology, mechanical response, and amorphization in various crystal orientations to elucidate the impact of crystal orientation on deformation and amorphization severity. Additionally, we investigated the concentration of residual stress and temperature. This work unveils the underlying deformation mechanism and enhances our comprehension of the anisotropic deformation in gallium arsenide during the nanogrinding process.

4.
Micromachines (Basel) ; 13(7)2022 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-35888907

RESUMO

Flexure leaf spring (FLS) with large deformation is the basic unit of compliant mechanisms with large stroke. The stiffness along the non-working directions of FLSs with large width-to-length ratio (w/L) is high. The motion stability of the compliant mechanism based on this type of FLS is high. When this type of FLS is loaded along the width direction, the shear deformation needs to be characterized. Nevertheless, currently available compliance modeling methods for FLS are established based on Euler-Bernoulli beam model and cannot be used to characterize shear models. Therefore, these methods are not applicable in this case. In this paper, a new six-DOF compliance model for FLSs with large w/L is established under large deformation. The shear deformation along the width direction model is characterized based on the Timoshenko beam theory. The new constraint model and differential equations are established to obtain a high-precision compliance model expression for this type of FLS. The effects of structural parameters on the compliance of the FLS are analyzed. Finally, the accuracy of the model is verified both experimentally and by finite element simulation. The relative error between theoretical result and experiment result is less than 5%.

5.
Exp Ther Med ; 13(2): 449-454, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28352314

RESUMO

Stem/progenitor cells serve an important role in the process of blood vessel repair. However, the mechanism of vascular repair mediated by C-X-C chemokine receptor type 4-positive (CXCR4+) bone marrow-derived mesenchymal stem cells (BMSCs) following myocardial infarction remains unclear. The aim of the present study was to investigate the effects of vascular endothelial growth factor (VEGF) on vessel endothelial differentiation from BMSCs. CXCR4+ BMSCs were isolated from the femoral bone marrow of 2-month-old mice and the cells were treated with VEGF. Expression of endothelial cell markers and the functional properties were assessed by reverse transcription-quantitative polymerase chain reaction, flow cytometry and vascular formation analyses. The results indicated that the CXCR4+ BMSCs from femoral bone marrow cells expressed putative cell surface markers of mesenchymal stem cells. Treatment with VEGF induced platelet/endothelial cell adhesion molecule-1 (PECAM-1) and von Willebrand factor (vWF) expression at the transcriptional and translational levels, compared with untreated controls. Moreover, VEGF treatment induced CXCR4+ BMSCs to form hollow tube-like structures on Matrigel, suggesting that the differentiated endothelial cells had the functional properties of blood vessels. The results demonstrate that the CXCR4+ BMSCs were able to differentiate into vessel endothelial cells following VEGF treatment. For cell transplantation in vascular disease, it may be concluded that CXCR4+ BMSCs are a novel source of endothelial progenitor cells with high potential for application in vascular repair.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA