Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 14636, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-34282208

RESUMO

Finding effective and objective biomarkers to inform the diagnosis of schizophrenia is of great importance yet remains challenging. Relatively little work has been conducted on multi-biological data for the diagnosis of schizophrenia. In this cross-sectional study, we extracted multiple features from three types of biological data, including gut microbiota data, blood data, and electroencephalogram data. Then, an integrated framework of machine learning consisting of five classifiers, three feature selection algorithms, and four cross validation methods was used to discriminate patients with schizophrenia from healthy controls. Our results show that the support vector machine classifier without feature selection using the input features of multi-biological data achieved the best performance, with an accuracy of 91.7% and an AUC of 96.5% (p < 0.05). These results indicate that multi-biological data showed better discriminative capacity for patients with schizophrenia than single biological data. The top 5% discriminative features selected from the optimal model include the gut microbiota features (Lactobacillus, Haemophilus, and Prevotella), the blood features (superoxide dismutase level, monocyte-lymphocyte ratio, and neutrophil count), and the electroencephalogram features (nodal local efficiency, nodal efficiency, and nodal shortest path length in the temporal and frontal-parietal brain areas). The proposed integrated framework may be helpful for understanding the pathophysiology of schizophrenia and developing biomarkers for schizophrenia using multi-biological data.


Assuntos
Algoritmos , Biomarcadores/análise , Esquizofrenia/diagnóstico , Adulto , Biomarcadores/sangue , Biomarcadores/metabolismo , Contagem de Células Sanguíneas , Análise Química do Sangue/estatística & dados numéricos , Estudos de Casos e Controles , China/epidemiologia , Estudos Transversais , Bases de Dados Factuais/estatística & dados numéricos , Diagnóstico Diferencial , Análise Discriminante , Eletroencefalografia/estatística & dados numéricos , Fezes/química , Feminino , Microbioma Gastrointestinal/fisiologia , Humanos , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Esquizofrenia/epidemiologia , Esquizofrenia/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA