RESUMO
The tumor suppressor TP53 is the most frequently mutated gene product in human cancer. Close to half of all solid tumors carry inactivating mutations in the TP53 gene, while in the remaining cases, TP53 activity is abrogated by other oncogenic events, such as hyperactivation of its endogenous repressors MDM2 or MDM4. Despite identification of hundreds of genes regulated by this transcription factor, it remains unclear which direct target genes and downstream pathways are essential for the tumor suppressive function of TP53. We set out to address this problem by generating multiple genomic data sets for three different cancer cell lines, allowing the identification of distinct sets of TP53-regulated genes, from early transcriptional targets through to late targets controlled at the translational level. We found that although TP53 elicits vastly divergent signaling cascades across cell lines, it directly activates a core transcriptional program of â¼100 genes with diverse biological functions, regardless of cell type or cellular response to TP53 activation. This core program is associated with high-occupancy TP53 enhancers, high levels of paused RNA polymerases, and accessible chromatin. Interestingly, two different shRNA screens failed to identify a single TP53 target gene required for the anti-proliferative effects of TP53 during pharmacological activation in vitro. Furthermore, bioinformatics analysis of thousands of cancer genomes revealed that none of these core target genes are frequently inactivated in tumors expressing wild-type TP53. These results support the hypothesis that TP53 activates a genetically robust transcriptional program with highly distributed tumor suppressive functions acting in diverse cellular contexts.
Assuntos
Elementos Facilitadores Genéticos , Neoplasias/metabolismo , Transcrição Gênica , Proteína Supressora de Tumor p53/metabolismo , Proteínas de Ciclo Celular , Humanos , Células MCF-7 , Neoplasias/genética , Neoplasias/patologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/genéticaRESUMO
BACKGROUND: Specific patterns of metabolomic profiles relating to cardiometabolic disease are associated with increased weight in adults. In youth with obesity, metabolomic data are sparse and associations with adiposity measures unknown. OBJECTIVES: Primary, to determine associations between adiposity measures and metabolomic profiles with increased cardiometabolic risks in youth with obesity. Secondary, to stratify associations by sex and puberty. METHODS: Participants were from COBRA (Childhood Overweight BioRepository of Australia; a paediatric cohort with obesity). Adiposity measures (BMI, BMI z-score, %truncal and %whole body fat, waist circumference and waist/height ratio), puberty staging and NMR metabolomic profiles from serum were assessed. Statistics included multivariate analysis (principal component analysis, PCA) and multiple linear regression models with false discovery rate adjustment. RESULTS: 214 participants had metabolomic profiles analyzed, mean age 11.9 years (SD ± 3.1), mean BMI z-score 2.49 (SD ± 0.24), 53% females. Unsupervised PCA identified no separable clusters of individuals. Positive associations included BMI z-score and phenylalanine, total body fat % and lipids in medium HDL, and waist circumference and tyrosine; negative associations included total body fat % and the ratio of docosahexaenoic acid/total fatty acids and histidine. Stratifying by sex and puberty, patterns of associations with BMI z-score in post-pubertal males included positive associations with lipid-, cholesterol- and triglyceride-content in VLDL lipoproteins; total fatty acids; total triglycerides; isoleucine, leucine and glycoprotein acetyls. CONCLUSION: In a paediatric cohort with obesity, increased adiposity measures, especially in post-pubertal males, were associated with distinct patterns in metabolomic profiles.
Assuntos
Adiposidade , Metabolômica , Obesidade/metabolismo , Puberdade , Caracteres Sexuais , Adolescente , Criança , Estudos de Coortes , Feminino , Humanos , MasculinoRESUMO
Open source tools are needed to facilitate the construction, analysis, and visualization of gene-gene interaction networks for sequencing data. To address this need, we present Encore, an open source network analysis pipeline for genome-wide association studies and rare variant data. Encore constructs Genetic Association Interaction Networks or epistasis networks using two optional approaches: our previous information-theory method or a generalized linear model approach. Additionally, Encore includes multiple data filtering options, including Random Forest/Random Jungle for main effect enrichment and Evaporative Cooling and Relief-F filters for enrichment of interaction effects. Encore implements SNPrank network centrality for identifying susceptibility hubs (nodes containing a large amount of disease susceptibility information through the combination of multivariate main effects and multiple gene-gene interactions in the network), and it provides appropriate files for interactive visualization of a network using tools from our online Galaxy instance. We implemented these algorithms in C++ using OpenMP for shared-memory parallel analysis on a server or desktop. To demonstrate Encore's utility in analysis of genetic sequencing data, we present an analysis of exome resequencing data from healthy individuals and those with Systemic Lupus Erythematous (SLE). Our results verify the importance of the previously associated SLE genes HLA-DRB and NCF2, and these two genes had the highest gene-gene interaction degrees among the susceptibility hubs. An additional 14 genes previously associated with SLE emerged in our epistasis network model of the exome data, and three novel candidate genes, ST8SIA4, CMTM4, and C2CD4B, were implicated in the model. In summary, we present a comprehensive tool for epistasis network analysis and the first such analysis of exome data from a genetic study of SLE.
Assuntos
Epistasia Genética , Redes Reguladoras de Genes , Lúpus Eritematoso Sistêmico/genética , Software , Algoritmos , Exoma , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Cadeias beta de HLA-DR/genética , Humanos , Desequilíbrio de Ligação , NADPH Oxidases/genética , Sialiltransferases/genéticaRESUMO
Whole genome duplication is frequently observed in cancer, and its prevalence in our prior analysis of end-stage, homologous recombination deficient high grade serous ovarian cancer (almost 80% of samples) supports the notion that whole genome duplication provides a fitness advantage under the selection pressure of therapy. Here, we therefore aim to identify potential therapeutic vulnerabilities in primary high grade serous ovarian cancer with whole genome duplication by assessing differentially expressed genes and pathways in 79 samples. We observe that MHC-II expression is lowest in tumors which have acquired whole genome duplication early in tumor evolution, and further demonstrate that reduced MHC-II expression occurs in subsets of tumor cells rather than in canonical antigen-presenting cells. Early whole genome duplication is also associated with worse patient survival outcomes. Our results suggest an association between the timing of whole genome duplication, MHC-II expression and clinical outcome in high grade serous ovarian cancer that warrants further investigation for therapeutic targeting.
Assuntos
Cistadenocarcinoma Seroso , Neoplasias Ovarianas , Feminino , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Humanos , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/patologia , Regulação Neoplásica da Expressão Gênica , Duplicação Gênica , Genoma Humano , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/metabolismoRESUMO
We performed a deep proteogenomic analysis of bulk tumor and laser microdissection enriched tumor cell populations from high-grade serous ovarian cancer (HGSOC) tissue specimens spanning a broad spectrum of purity. We identified patients with longer progression-free survival had increased immune-related signatures and validated proteins correlating with tumor-infiltrating lymphocytes in 65 tumors from an independent cohort of HGSOC patients, as well as with overall survival in an additional 126 HGSOC patient cohort. We identified that homologous recombination deficient (HRD) tumors are enriched in pathways associated with metabolism and oxidative phosphorylation that we validated in independent patient cohorts. We further identified that polycomb complex protein BMI-1 is elevated in HR proficient (HRP) tumors, that elevated BMI-1 correlates with poor overall survival in HRP but not HRD HGSOC patients, and that HRP HGSOC cells are uniquely sensitive to BMI-1 inhibition.
RESUMO
PURPOSE: The purpose of this study was to evaluate RB1 expression and survival across ovarian carcinoma histotypes and how co-occurrence of BRCA1 or BRCA2 (BRCA) alterations and RB1 loss influences survival in tubo-ovarian high-grade serous carcinoma (HGSC). EXPERIMENTAL DESIGN: RB1 protein expression was classified by immunohistochemistry in ovarian carcinomas of 7,436 patients from the Ovarian Tumor Tissue Analysis consortium. We examined RB1 expression and germline BRCA status in a subset of 1,134 HGSC, and related genotype to overall survival (OS), tumor-infiltrating CD8+ lymphocytes, and transcriptomic subtypes. Using CRISPR-Cas9, we deleted RB1 in HGSC cells with and without BRCA1 alterations to model co-loss with treatment response. We performed whole-genome and transcriptome data analyses on 126 patients with primary HGSC to characterize tumors with concurrent BRCA deficiency and RB1 loss. RESULTS: RB1 loss was associated with longer OS in HGSC but with poorer prognosis in endometrioid ovarian carcinoma. Patients with HGSC harboring both RB1 loss and pathogenic germline BRCA variants had superior OS compared with patients with either alteration alone, and their median OS was three times longer than those without pathogenic BRCA variants and retained RB1 expression (9.3 vs. 3.1 years). Enhanced sensitivity to cisplatin and paclitaxel was seen in BRCA1-altered cells with RB1 knockout. Combined RB1 loss and BRCA deficiency correlated with transcriptional markers of enhanced IFN response, cell-cycle deregulation, and reduced epithelial-mesenchymal transition. CD8+ lymphocytes were most prevalent in BRCA-deficient HGSC with co-loss of RB1. CONCLUSIONS: Co-occurrence of RB1 loss and BRCA deficiency was associated with exceptionally long survival in patients with HGSC, potentially due to better treatment response and immune stimulation.
Assuntos
Proteína BRCA1 , Proteína BRCA2 , Cistadenocarcinoma Seroso , Neoplasias Ovarianas , Proteínas de Ligação a Retinoblastoma , Humanos , Feminino , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/mortalidade , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/patologia , Proteína BRCA2/genética , Proteína BRCA2/deficiência , Proteína BRCA1/genética , Proteína BRCA1/deficiência , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/patologia , Cistadenocarcinoma Seroso/mortalidade , Cistadenocarcinoma Seroso/imunologia , Proteínas de Ligação a Retinoblastoma/genética , Prognóstico , Ubiquitina-Proteína Ligases/genética , Gradação de Tumores , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Pessoa de Meia-Idade , Mutação em Linhagem Germinativa , Regulação Neoplásica da Expressão Gênica , Idoso , Biomarcadores Tumorais/genética , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismoRESUMO
While the introduction of poly-(ADP)-ribose polymerase (PARP) inhibitors in homologous recombination DNA repair (HR) deficient high grade serous ovarian, fallopian tube and primary peritoneal cancers (HGSC) has improved patient survival, resistance to PARP inhibitors frequently occurs. Preclinical and translational studies have identified multiple mechanisms of resistance; here we examined tumour samples collected from 26 women following treatment with PARP inhibitors as part of standard of care or their enrolment in clinical trials. Twenty-one had a germline or somatic BRCA1/2 mutation. We performed targeted sequencing of 63 genes involved in DNA repair processes or implicated in ovarian cancer resistance. We found that just three individuals had a small-scale mutation as a definitive resistance mechanism detected, having reversion mutations, while six had potential mechanisms of resistance detected, with alterations related to BRCA1 function and mutations in SHLD2. This study indicates that mutations in genes related to DNA repair are detected in a minority of HGSC patients as genetic mechanisms of resistance. Future research into resistance in HGSC should focus on copy number, transcriptional and epigenetic aberrations, and the contribution of the tumour microenvironment.
Assuntos
Antineoplásicos , Neoplasias Ovarianas , Humanos , Feminino , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Proteína BRCA1/genética , Proteína BRCA2/genética , Antineoplásicos/uso terapêutico , Mutação , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Microambiente TumoralRESUMO
Inactivation of the p53 tumor suppressor, either by mutations or through hyperactivation of repressors such as MDM2 and MDM4, is a hallmark of cancer. Although many inhibitors of the p53-MDM2/4 interaction have been developed, such as Nutlin, their therapeutic value is limited by highly heterogeneous cellular responses. We report here a multi-omics investigation of the cellular response to MDM2/4 inhibitors, leading to identification of FAM193A as a widespread regulator of p53 function. CRISPR screening identified FAM193A as necessary for the response to Nutlin. FAM193A expression correlates with Nutlin sensitivity across hundreds of cell lines. Furthermore, genetic codependency data highlight FAM193A as a component of the p53 pathway across diverse tumor types. Mechanistically, FAM193A interacts with MDM4, and FAM193A depletion stabilizes MDM4 and inhibits the p53 transcriptional program. Last, FAM193A expression is associated with better prognosis in multiple malignancies. Altogether, these results identify FAM193A as a positive regulator of p53.
Assuntos
Antineoplásicos , Neoplasias , Humanos , Antineoplásicos/farmacologia , Apoptose , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Neoplasias/patologia , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismoRESUMO
Limited evidence exists on the impact of spatial and temporal heterogeneity of high-grade serous ovarian cancer (HGSOC) on tumor evolution, clinical outcomes, and surgical operability. We perform systematic multi-site tumor mapping at presentation and matched relapse from 49 high-tumor-burden patients, operated up front. From SNP array-derived copy-number data, we categorize dendrograms representing tumor clonal evolution as sympodial or dichotomous, noting most chemo-resistant patients favor simpler sympodial evolution. Three distinct tumor evolutionary patterns from primary to relapse are identified, demonstrating recurrent disease may emerge from pre-existing or newly detected clones. Crucially, we identify spatial heterogeneity for clinically actionable homologous recombination deficiency scores and for poor prognosis biomarkers CCNE1 and MYC. Copy-number signature, phenotypic, proteomic, and proliferative-index heterogeneity further highlight HGSOC complexity. This study explores HGSOC evolution and dissemination across space and time, its impact on optimal surgical cytoreductive effort and clinical outcomes, and its consequences for clinical decision-making.
Assuntos
Neoplasias Ovarianas , Feminino , Humanos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/cirurgia , Neoplasias Ovarianas/patologia , Proteômica , Recidiva Local de Neoplasia/genéticaRESUMO
High-grade serous ovarian cancer (HGSC) is frequently characterized by homologous recombination (HR) DNA repair deficiency and, while most such tumors are sensitive to initial treatment, acquired resistance is common. We undertook a multiomics approach to interrogate molecular diversity in end-stage disease, using multiple autopsy samples collected from 15 women with HR-deficient HGSC. Patients had polyclonal disease, and several resistance mechanisms were identified within most patients, including reversion mutations and HR restoration by other means. We also observed frequent whole-genome duplication and global changes in immune composition with evidence of immune escape. This analysis highlights diverse evolutionary changes within HGSC that evade therapy and ultimately overwhelm individual patients.
Assuntos
Cistadenocarcinoma Seroso , Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/genética , Multiômica , Carcinoma Epitelial do Ovário , Recombinação Homóloga/genética , Cistadenocarcinoma Seroso/genéticaRESUMO
Background: Somatic loss of the tumour suppressor RB1 is a common event in tubo-ovarian high-grade serous carcinoma (HGSC), which frequently co-occurs with alterations in homologous recombination DNA repair genes including BRCA1 and BRCA2 (BRCA). We examined whether tumour expression of RB1 was associated with survival across ovarian cancer histotypes (HGSC, endometrioid (ENOC), clear cell (CCOC), mucinous (MOC), low-grade serous carcinoma (LGSC)), and how co-occurrence of germline BRCA pathogenic variants and RB1 loss influences long-term survival in a large series of HGSC. Patients and methods: RB1 protein expression patterns were classified by immunohistochemistry in epithelial ovarian carcinomas of 7436 patients from 20 studies participating in the Ovarian Tumor Tissue Analysis consortium and assessed for associations with overall survival (OS), accounting for patient age at diagnosis and FIGO stage. We examined RB1 expression and germline BRCA status in a subset of 1134 HGSC, and related genotype to survival, tumour infiltrating CD8+ lymphocyte counts and transcriptomic subtypes. Using CRISPR-Cas9, we deleted RB1 in HGSC cell lines with and without BRCA1 mutations to model co-loss with treatment response. We also performed genomic analyses on 126 primary HGSC to explore the molecular characteristics of concurrent homologous recombination deficiency and RB1 loss. Results: RB1 protein loss was most frequent in HGSC (16.4%) and was highly correlated with RB1 mRNA expression. RB1 loss was associated with longer OS in HGSC (hazard ratio [HR] 0.74, 95% confidence interval [CI] 0.66-0.83, P = 6.8 ×10-7), but with poorer prognosis in ENOC (HR 2.17, 95% CI 1.17-4.03, P = 0.0140). Germline BRCA mutations and RB1 loss co-occurred in HGSC (P < 0.0001). Patients with both RB1 loss and germline BRCA mutations had a superior OS (HR 0.38, 95% CI 0.25-0.58, P = 5.2 ×10-6) compared to patients with either alteration alone, and their median OS was three times longer than non-carriers whose tumours retained RB1 expression (9.3 years vs. 3.1 years). Enhanced sensitivity to cisplatin (P < 0.01) and paclitaxel (P < 0.05) was seen in BRCA1 mutated cell lines with RB1 knockout. Among 126 patients with whole-genome and transcriptome sequence data, combined RB1 loss and genomic evidence of homologous recombination deficiency was correlated with transcriptional markers of enhanced interferon response, cell cycle deregulation, and reduced epithelial-mesenchymal transition in primary HGSC. CD8+ lymphocytes were most prevalent in BRCA-deficient HGSC with co-loss of RB1. Conclusions: Co-occurrence of RB1 loss and BRCA mutation was associated with exceptionally long survival in patients with HGSC, potentially due to better treatment response and immune stimulation.
RESUMO
MOTIVATION: Bioinformatics researchers have a variety of programming languages and architectures at their disposal, and recent advances in graphics processing unit (GPU) computing have added a promising new option. However, many performance comparisons inflate the actual advantages of GPU technology. In this study, we carry out a realistic performance evaluation of SNPrank, a network centrality algorithm that ranks single nucleotide polymorhisms (SNPs) based on their importance in the context of a phenotype-specific interaction network. Our goal is to identify the best computational engine for the SNPrank web application and to provide a variety of well-tested implementations of SNPrank for Bioinformaticists to integrate into their research. RESULTS: Using SNP data from the Wellcome Trust Case Control Consortium genome-wide association study of Bipolar Disorder, we compare multiple SNPrank implementations, including Python, Matlab and Java as well as CPU versus GPU implementations. When compared with naïve, single-threaded CPU implementations, the GPU yields a large improvement in the execution time. However, with comparable effort, multi-threaded CPU implementations negate the apparent advantage of GPU implementations. AVAILABILITY: The SNPrank code is open source and available at http://insilico.utulsa.edu/snprank.
Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Software , Algoritmos , Biologia Computacional , Gráficos por Computador , Computadores , Linguagens de ProgramaçãoRESUMO
PURPOSE: Tubo-ovarian cancer (TOC) is a sentinel cancer for BRCA1 and BRCA2 pathogenic variants (PVs). Identification of a PV in the first member of a family at increased genetic risk (the proband) provides opportunities for cancer prevention in other at-risk family members. Although Australian testing rates are now high, PVs in patients with TOC whose diagnosis predated revised testing guidelines might have been missed. We assessed the feasibility of detecting PVs in this population to enable genetic risk reduction in relatives. PATIENTS AND METHODS: In this pilot study, deceased probands were ascertained from research cohort studies, identification by a relative, and gynecologic oncology clinics. DNA was extracted from archival tissue or stored blood for panel sequencing of 10 risk-associated genes. Testing of deceased probands ascertained through clinic records was performed with a consent waiver. RESULTS: We identified 85 PVs in 84 of 787 (11%) probands. Familial contacts of 39 of 60 (65%) deceased probands with an identified recipient (60 of 84; 71%) have received a written notification of results, with follow-up verbal contact made in 85% (33 of 39). A minority of families (n = 4) were already aware of the PV. For many (29 of 33; 88%), the genetic result provided new information and referral to a genetic service was accepted in most cases (66%; 19 of 29). Those who declined referral (4 of 29) were all male next of kin whose family member had died more than 10 years before. CONCLUSION: We overcame ethical and logistic challenges to demonstrate that retrospective genetic testing to identify PVs in previously untested deceased probands with TOC is feasible. Understanding reasons for a family member's decision to accept or decline a referral will be important for guiding future TRACEBACK projects.
Assuntos
Neoplasias da Mama , Neoplasias Ovarianas , Austrália , Neoplasias da Mama/genética , Carcinoma Epitelial do Ovário/genética , Família , Feminino , Predisposição Genética para Doença , Testes Genéticos/métodos , Humanos , Masculino , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/prevenção & controle , Projetos Piloto , Estudos RetrospectivosRESUMO
Fewer than half of all patients with advanced-stage high-grade serous ovarian cancers (HGSCs) survive more than five years after diagnosis, but those who have an exceptionally long survival could provide insights into tumor biology and therapeutic approaches. We analyzed 60 patients with advanced-stage HGSC who survived more than 10 years after diagnosis using whole-genome sequencing, transcriptome and methylome profiling of their primary tumor samples, comparing this data to 66 short- or moderate-term survivors. Tumors of long-term survivors were more likely to have multiple alterations in genes associated with DNA repair and more frequent somatic variants resulting in an increased predicted neoantigen load. Patients clustered into survival groups based on genomic and immune cell signatures, including three subsets of patients with BRCA1 alterations with distinctly different outcomes. Specific combinations of germline and somatic gene alterations, tumor cell phenotypes and differential immune responses appear to contribute to long-term survival in HGSC.
Assuntos
Genômica , Neoplasias Ovarianas , Feminino , Humanos , Sobreviventes , Neoplasias Ovarianas/genéticaRESUMO
Tumor cell dissemination in cancer patients is associated with a significant reduction in their survival and quality of life. The ubiquitination pathway plays a fundamental role in the maintenance of protein homeostasis both in normal and stressed conditions and its dysregulation has been associated with malignant transformation and invasive potential of tumor cells, thus highlighting its value as a potential therapeutic target. In order to identify novel molecular targets of tumor cell migration and invasion we performed a genetic screen with an shRNA library against ubiquitination pathway-related genes. To this end, we set up a protocol to specifically enrich positive migration regulator candidates. We identified the deubiquitinase USP19 and demonstrated that its silencing reduces the migratory and invasive potential of highly invasive breast cancer cell lines. We extended our investigation in vivo and confirmed that mice injected with USP19 depleted cells display increased tumor-free survival, as well as a delay in the onset of the tumor formation and a significant reduction in the appearance of metastatic foci, indicating that tumor cell invasion and dissemination is impaired. In contrast, overexpression of USP19 increased cell invasiveness both in vitro and in vivo, further validating our findings. More importantly, we demonstrated that USP19 catalytic activity is important for the control of tumor cell migration and invasion, and that its molecular mechanism of action involves LRP6, a Wnt co-receptor. Finally, we showed that USP19 overexpression is a surrogate prognostic marker of distant relapse in patients with early breast cancer. Altogether, these findings demonstrate that USP19 might represent a novel therapeutic target in breast cancer.
RESUMO
Despite high response rates to initial chemotherapy, the majority of women diagnosed with High-Grade Serous Ovarian Cancer (HGSOC) ultimately develop drug resistance within 1-2 years of treatment. We previously identified the most common mechanism of acquired resistance in HGSOC to date, transcriptional fusions involving the ATP-binding cassette (ABC) transporter ABCB1, which has well established roles in multidrug resistance. However, the underlying biology of fusion-positive cells, as well as how clonal interactions between fusion-negative and positive populations influences proliferative fitness and therapeutic response remains unknown. Using a panel of fusion-negative and positive HGSOC single-cell clones, we demonstrate that in addition to mediating drug resistance, ABCB1 fusion-positive cells display impaired proliferative capacity, elevated oxidative metabolism, altered actin cellular morphology and an extracellular matrix/inflammatory enriched transcriptional profile. The co-culture of fusion-negative and positive populations had no effect on cellular proliferation but markedly altered drug sensitivity to doxorubicin, paclitaxel and cisplatin. Finally, high-throughput screening of 2907 FDA-approved compounds revealed 36 agents that induce equal cytotoxicity in both pure and mixed ABCB1 fusion populations. Collectively, our findings have unraveled the underlying biology of ABCB1 fusion-positive cells beyond drug resistance and identified novel therapeutic agents that may significantly improve the prognosis of relapsed HGSOC patients.
RESUMO
Activation of p53 by the small molecule Nutlin can result in a combination of cell cycle arrest and apoptosis. The relative strength of these events is difficult to predict by classical gene expression analysis, leaving uncertainty as to the therapeutic benefits. In this study, we report a translational control mechanism shaping p53-dependent apoptosis. Using polysome profiling, we establish Nutlin-induced apoptosis to associate with the enhanced translation of mRNAs carrying multiple copies of an identified 3' UTR CG-rich motif mediating p53-dependent death (CGPD-motif). We identify PCBP2 and DHX30 as CGPD-motif interactors. We find that in cells undergoing persistent cell cycle arrest in response to Nutlin, CGPD-motif mRNAs are repressed by the PCBP2-dependent binding of DHX30 to the motif. Upon DHX30 depletion in these cells, the translation of CGPD-motif mRNAs increases, and the response to Nutlin shifts toward apoptosis. Instead, DHX30 inducible overexpression in SJSA1 cells leads to decreased translation of CGPD-motif mRNAs.
Assuntos
Apoptose/efeitos dos fármacos , Imidazóis/farmacologia , Piperazinas/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , RNA Helicases/metabolismo , Proteínas de Ligação a RNA/metabolismo , Regiões 3' não Traduzidas/genética , Sequência de Bases , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Humanos , Proteínas de Neoplasias/metabolismo , Motivos de Nucleotídeos/genética , Fenótipo , Polirribossomos/efeitos dos fármacos , Polirribossomos/metabolismo , Ligação Proteica/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismoRESUMO
ABCB1 encodes Multidrug Resistance protein (MDR1), an ATP-binding cassette member involved in the cellular efflux of chemotherapeutic drugs. Here we report that ovarian and breast samples from chemotherapy treated patients are positive for multiple transcriptional fusions involving ABCB1, placing it under the control of a strong promoter while leaving its open reading frame intact. We identified 15 different transcriptional fusion partners involving ABCB1, as well as patients with multiple distinct fusion events. The partner gene selected depended on its structure, promoter strength, and chromosomal proximity to ABCB1. Fusion positivity was strongly associated with the number of lines of MDR1-substrate chemotherapy given. MDR1 inhibition in a fusion positive ovarian cancer cell line increased sensitivity to paclitaxel more than 50-fold. Convergent evolution of ABCB1 fusion is therefore frequent in chemotherapy resistant recurrent ovarian cancer. As most currently approved PARP inhibitors (PARPi) are MDR1 substrates, prior chemotherapy may precondition resistance to PARPi.
Assuntos
Neoplasias da Mama/genética , Cistadenocarcinoma Seroso/genética , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Fusão Oncogênica/genética , Neoplasias Ovarianas/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Estudos de Coortes , Cistadenocarcinoma Seroso/tratamento farmacológico , Cistadenocarcinoma Seroso/metabolismo , Cistadenocarcinoma Seroso/patologia , Feminino , Humanos , Pessoa de Meia-Idade , Gradação de Tumores , Proteínas de Fusão Oncogênica/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Paclitaxel/uso terapêutico , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Regiões Promotoras Genéticas , Recidiva , Transcrição GênicaRESUMO
The capacity for tumor cells to metastasize efficiently is directly linked to their ability to colonize secondary sites. Here we identify Six2, a developmental transcription factor, as a critical regulator of a breast cancer stem cell program that enables metastatic colonization. In several triple-negative breast cancer (TNBC) models, Six2 enhanced the expression of genes associated with embryonic stem cell programs. Six2 directly bound the Sox2 Srr2 enhancer, promoting Sox2 expression and downstream expression of Nanog, which are both key pluripotency factors. Regulation of Sox2 by Six2 enhanced cancer stem cell properties and increased metastatic colonization. Six2 and Sox2 expression correlated highly in breast cancers including TNBC, where a Six2 expression signature was predictive of metastatic burden and poor clinical outcome. Our findings demonstrate that a SIX2/SOX2 axis is required for efficient metastatic colonization, underscoring a key role for stemness factors in outgrowth at secondary sites. SIGNIFICANCE: These findings provide novel mechanistic insight into stemness and the metastatic outgrowth of triple-negative breast cancer cells.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/4/720/F1.large.jpg.
Assuntos
Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Recidiva Local de Neoplasia/patologia , Células-Tronco Neoplásicas/patologia , Proteínas do Tecido Nervoso/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Neoplasias de Mama Triplo Negativas/secundário , Animais , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Proliferação de Células , Feminino , Seguimentos , Proteínas de Homeodomínio/genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos SCID , Proteína Homeobox Nanog/genética , Proteína Homeobox Nanog/metabolismo , Metástase Neoplásica , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteínas do Tecido Nervoso/genética , Prognóstico , Fatores de Transcrição SOXB1/genética , Taxa de Sobrevida , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Research into factors affecting treatment response or survival in patients with cancer frequently involves cohorts that span the most common range of clinical outcomes, as such patients are most readily available for study. However, attention has turned to highly unusual patients who have exceptionally favourable or atypically poor responses to treatment and/or overall survival, with the expectation that patients at the extremes may provide insights that could ultimately improve the outcome of individuals with more typical disease trajectories. While clinicians can often recount surprising patients whose clinical journey was very unusual, given known clinical characteristics and prognostic indicators, there is a lack of consensus among researchers on how best to define exceptional patients, and little has been proposed for the optimal design of studies to identify factors that dictate unusual outcome. In this Opinion article, we review different approaches to identifying exceptional patients with cancer and possible study designs to investigate extraordinary clinical outcomes. We discuss pitfalls with finding these rare patients, including challenges associated with accrual of patients across different treatment centres and time periods. We describe recent molecular and immunological factors that have been identified as contributing to unusual patient outcome and make recommendations for future studies on these intriguing patients.