Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Plant Sci ; 12: 659474, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34262576

RESUMO

MADS-box transcription factors play vital roles in multiple biological processes in plants. At present, a comprehensive investigation into the genome-wide identification and classification of MADS-box genes in foxtail millet (Setaria italica L.) has not been reported. In this study, we identified 72 MADS-box genes in the foxtail millet genome and give an overview of the phylogeny, chromosomal location, gene structures, and potential functions of the proteins encoded by these genes. We also found that the expression of 10 MIKC-type MADS-box genes was induced by abiotic stresses (PEG-6000 and NaCl) and exogenous hormones (ABA and GA), which suggests that these genes may play important regulatory roles in response to different stresses. Further studies showed that transgenic Arabidopsis and rice (Oryza sativa L.) plants overexpressing SiMADS51 had reduced drought stress tolerance as revealed by lower survival rates and poorer growth performance under drought stress conditions, which demonstrated that SiMADS51 is a negative regulator of drought stress tolerance in plants. Moreover, expression of some stress-related genes were down-regulated in the SiMADS51-overexpressing plants. The results of our study provide an overall picture of the MADS-box gene family in foxtail millet and establish a foundation for further research on the mechanisms of action of MADS-box proteins with respect to abiotic stresses.

2.
Huan Jing Ke Xue ; 32(2): 330-7, 2011 Feb.
Artigo em Zh | MEDLINE | ID: mdl-21528551

RESUMO

1090 precipitation samples were collected from 1989 to 2006 at Lijiang City. The analyzed results indicate that the average pH value is 6.08 at study period, which is higher than the average pH value (5.0) during 1987 to 1989, and the annual pH value show an increasing trend, suggesting there are more alkaline mass input to air after 1989. the concentrations of major ions Cl-, SO4(2-), NO3-, Na+, Ca2+, Mg2+ and NH4+ are 11.56, 32.64, 3.63, 2.54, 50.19, 7.73 and 11.36 microeq x L(-1), respectively. By computed the correlation coefficients and sources contribution among major ions, it find that Ca2+ and Mg2+ are from soil-derived sources, and about 57.2% of SO4(2-) also come from soil-derived sources; 95.4% of total NO3- and 41.9% of SO4(2-) come from anthropogenic sources, and only Na+ and 25.7% of Cl- come from sea source, meaning that the chemical composition of precipitation at Lijiang region is main influenced by regional sources. According to the variation of tour scale at Lijiang city, it can be divided into 3 periods of 1987-1989, 1989-1996 and 1997-2006. The percent of soil-derived ions at different periods is 40%, 53% and 72%, respectively, showing a significant increase trend; but the percent of anthropology-derived ions at different periods is 39%, 36% and 15%, respectively, showing a decrease trend. It explains that more dust input to the air by expending city scale, changing the land form and overusing water resources. But in order to develop tourism, the pollutants related to industries are controlled well.


Assuntos
Monitoramento Ambiental/métodos , Poluentes Ambientais/análise , Chuva/química , Viagem , China , Concentração de Íons de Hidrogênio
3.
Huan Jing Ke Xue ; 30(2): 362-7, 2009 Feb 15.
Artigo em Zh | MEDLINE | ID: mdl-19402482

RESUMO

Rainwater samples were colleted from Lijiang City, China, in 23 May-2 July, 2006. Rainwater chemical compositions and sources were studied, using HYSPLIT model, ions tracer techniques, correlation and trend analysis. Total ionic concentration was dominated by SO4(2-) and Ca2+, which account for 65.5% and 15.6% respectively. Sort order of ions concentration is SO4(2-) > Ca2+ > Cl(-) > NO3(-) > Na+ > K+ > Mg2+. Total anions concentration is higher than total cations concentration in 13 rainwater events. The ratio of SO4(2-) to NO3(-) varies from 7.2 to 37.1 and average value is 15.7, it reflected SO4(2-) made great contribution to rainwater acidity in Lijiang City. The correlation among ions is significant due to the atmospheric chemical process and similar ionic sources, and correlation coefficient between SO4(2-) and NO3(-) is 0.74. And what's more, the negative correlation of ionic concentration, precipitation and the average wind speed is also outstanding. The source of NO3(-), SO4(2-), K+ and Ca2+ is mainly land dust, and the non-marine source percent of NO3(-), SO4(2-), K+, Ca2+, Mg2+ and Cl(-) is 100%, 98.8%, 96%, 99.3%, 46.7% and 50.3%, respectively. The main reason of atmospheric environmental variation in Lijing City is pollution caused by economic actions. The pollutants from surrounding industrial parks input into Lijiang City by local circulation, and from industrial regions of Southern Asia, Southeastern Asia and Southeastern China input into Lijiang City by monsoonal circulation.


Assuntos
Chuva Ácida/análise , Poluentes Atmosféricos/análise , Nitratos/análise , Chuva/química , Dióxido de Enxofre/análise , Cálcio/análise , China , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA