Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38928427

RESUMO

Water deficit is the major stress factor magnified by climate change that causes the most reductions in plant productivity. Knowledge of photosystem II (PSII) response mechanisms underlying crop vulnerability to drought is critical to better understanding the consequences of climate change on crop plants. Salicylic acid (SA) application under drought stress may stimulate PSII function, although the exact mechanism remains essentially unclear. To reveal the PSII response mechanism of celery plants sprayed with water (WA) or SA, we employed chlorophyll fluorescence imaging analysis at 48 h, 96 h, and 192 h after watering. The results showed that up to 96 h after watering, the stroma lamellae of SA-sprayed leaves appeared dilated, and the efficiency of PSII declined, compared to WA-sprayed plants, which displayed a better PSII function. However, 192 h after watering, the stroma lamellae of SA-sprayed leaves was restored, while SA boosted chlorophyll synthesis, and by ameliorating the osmotic potential of celery plants, it resulted in higher relative leaf water content compared to WA-sprayed plants. SA, by acting as an antioxidant under drought stress, suppressed phototoxicity, thereby offering PSII photoprotection, together with enhanced effective quantum yield of PSII photochemistry (ΦPSII) and decreased quantity of singlet oxygen (1O2) generation compared to WA-sprayed plants. The PSII photoprotection mechanism induced by SA under drought stress was triggered by non-photochemical quenching (NPQ), which is a strategy to protect the chloroplast from photo-oxidative damage by dissipating the excess light energy as heat. This photoprotective mechanism, triggered by NPQ under drought stress, was adequate in keeping, especially in high-light conditions, an equal fraction of open PSII reaction centers (qp) as of non-stress conditions. Thus, under water deficit stress, SA activates a regulatory network of stress and light energy partitioning signaling that can mitigate, to an extent, the water deficit stress on PSII functioning.


Assuntos
Apium , Clorofila , Complexo de Proteína do Fotossistema II , Folhas de Planta , Ácido Salicílico , Complexo de Proteína do Fotossistema II/metabolismo , Ácido Salicílico/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Clorofila/metabolismo , Apium/metabolismo , Secas , Água/metabolismo , Fotossíntese/efeitos dos fármacos , Desidratação/metabolismo , Estresse Fisiológico
2.
Int J Mol Sci ; 25(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38891916

RESUMO

Photosystem II (PSII) functions were investigated in basil (Ocimum basilicum L.) plants sprayed with 1 mM salicylic acid (SA) under non-stress (NS) or mild drought-stress (MiDS) conditions. Under MiDS, SA-sprayed leaves retained significantly higher (+36%) chlorophyll content compared to NS, SA-sprayed leaves. PSII efficiency in SA-sprayed leaves under NS conditions, evaluated at both low light (LL, 200 µmol photons m-2 s-1) and high light (HL, 900 µmol photons m-2 s-1), increased significantly with a parallel significant decrease in the excitation pressure at PSII (1-qL) and the excess excitation energy (EXC). This enhancement of PSII efficiency under NS conditions was induced by the mechanism of non-photochemical quenching (NPQ) that reduced singlet oxygen (1O2) production, as indicated by the reduced quantum yield of non-regulated energy loss in PSII (ΦNO). Under MiDS, the thylakoid structure of water-sprayed leaves appeared slightly dilated, and the efficiency of PSII declined, compared to NS conditions. In contrast, the thylakoid structure of SA-sprayed leaves did not change under MiDS, while PSII functionality was retained, similar to NS plants at HL. This was due to the photoprotective heat dissipation by NPQ, which was sufficient to retain the same percentage of open PSII reaction centers (qp), as in NS conditions and HL. We suggest that the redox status of the plastoquinone pool (qp) under MiDS and HL initiated the acclimation response to MiDS in SA-sprayed leaves, which retained the same electron transport rate (ETR) with control plants. Foliar spray of SA could be considered as a method to improve PSII efficiency in basil plants under NS conditions, at both LL and HL, while under MiDS and HL conditions, basil plants could retain PSII efficiency similar to control plants.


Assuntos
Secas , Ocimum basilicum , Complexo de Proteína do Fotossistema II , Folhas de Planta , Ácido Salicílico , Estresse Fisiológico , Complexo de Proteína do Fotossistema II/metabolismo , Ácido Salicílico/farmacologia , Ácido Salicílico/metabolismo , Ocimum basilicum/metabolismo , Ocimum basilicum/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Clorofila/metabolismo , Fotossíntese/efeitos dos fármacos , Tilacoides/metabolismo , Tilacoides/efeitos dos fármacos , Luz
3.
J Mol Cell Cardiol ; 183: 27-41, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37603971

RESUMO

Peroxisome proliferator-activated receptor (PPAR) δ is a major transcriptional regulator of cardiac energy metabolism with pleiotropic properties, including anti-inflammatory, anti-oxidative and cardioprotective action. In this study, we sought to investigate whether pharmacological activation of PPARδ via intraperitoneal administration of the selective ligand GW0742 could ameliorate heart failure and mitochondrial dysfunction that have been previously reported in a characterized genetic model of heart failure, the desmin null mice (Des-/-). Our studies demonstrate that treatment of Des-/- mice with the PPARδ agonist attenuated cardiac inflammation, fibrosis and cardiac remodeling. In addition, PPARδ activation alleviated oxidative stress in the failing myocardium as evidenced by decreased ROS levels. Importantly, PPARδ activation stimulated mitochondrial biogenesis, prevented mitochondrial and sarcoplasmic reticulum vacuolar degeneration and improved the mitochondrial intracellular distribution. Finally, PPARδ activation alleviated the mitochondrial respiratory dysfunction, prevented energy depletion and alleviated excessive autophagy and mitophagy in Des-/- hearts. Nevertheless, improvement of all these parameters did not suffice to overcome the significant structural deficiencies that desmin deletion incurs in cardiomyocytes and cardiac function did not improve significantly. In conclusion, pharmacological PPARδ activation in Des-/- hearts exerts protective effects during myocardial degeneration and heart failure by preserving the function and quality of the mitochondrial network. These findings implicate PPARδ agonists as a supplemental constituent of heart failure medications.

4.
Int J Mol Sci ; 24(17)2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37686039

RESUMO

The ordinary epidermal cells of various vascular plants are characterized by wavy anticlinal wall contours. This feature has not yet been reported in multicellular algal species. Here, we found that, in the leaf-like blades of the brown alga Sargassum vulgare, epidermal cells exhibit prominent waviness. Initially, the small meristodermal cells exhibit straight anticlinal contour, which during their growth becomes wavy, in a pattern highly reminiscent of that found in land plants. Waviness is restricted close to the external periclinal wall, while at inner levels the anticlinal walls become thick and even. The mechanism behind this shape relies on cortical F-actin organization. Bundles of actin filaments are organized, extending under the external periclinal wall and connecting its junctions with the anticlinal walls, constituting an interconnected network. These bundles define the sites of local thickening deposition at the anticlinal/periclinal wall junctions. These thickenings are interconnected by cellulose microfibril extensions under the external periclinal wall. Apart from the wavy anticlinal contour, outward protrusions also arise on the external periclinal wall, thus the whole epidermis exhibits a quilted appearance. Apart from highlighting a new role for F-actin in cell shaping, the comparison of this morphogenetic mechanism to that of vascular plants reveals a case of evolutionary convergence among photosynthetic organisms.


Assuntos
Sargassum , Traqueófitas , Actinas , Células Epidérmicas , Epiderme , Citoesqueleto de Actina , Morfogênese
5.
J Fish Biol ; 102(1): 44-52, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36196905

RESUMO

Although oogonial proliferation continues in mature females in most teleosts, its dynamics and the transformation of oogonia to early meiotic oocytes during the reproductive cycle have received little attention. In the present study, early oogenesis was examined throughout the reproductive cycle in two Clupeiform fishes, the Mediterranean sardine, Sardina pilchardus, and the European anchovy, Engraulis encrasicolus. Observations using confocal laser scanning microscopy (CLSM) provided extensive information on markers of oogonial proliferation (mitotic divisions, oogonia nests) and meiotic prophase I divisions of oocyte nests (leptotene, zygotene, pachytene, diplotene) in ovaries of different reproductive phases. In sardine, oogonial proliferation persisted throughout the entire reproductive cycle, whereas in anchovy, it was more pronounced prior to (developing ovaries) and after (resting ovaries) the spawning period. Anchovy exhibited a higher rate of meiotic activity in developing ovaries, whereas sardine exhibited a higher rate in resting ovaries. The observed differences between the two species can potentially be attributed to different seasonal patterns of energy allocation to reproduction and the synchronization between feeding and the spawning season.


Assuntos
Meiose , Oogônios , Feminino , Animais , Oócitos , Oogênese , Reprodução , Peixes , Proliferação de Células
6.
Mol Phylogenet Evol ; 170: 107454, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35341965

RESUMO

Well-studied thermal spring microbial mat systems continue to serve as excellent models from which to make discoveries of general importance to microbial community ecology in order to address comprehensively the question of "who is there" in a microbial community. Cyanobacteria are highly adaptable and an integral part of many ecosystems including thermal springs. In this context, we sampled disparate thermal springs, spanning from Iceland and Poland to Greece and Tajikistan. Thirteen (13) strains were isolated and characterised with taxonomic indices and molecular markers (16S-23S rRNA region and cpcBA gene), whilst their thermotolerance was evaluated. Screening for the presence of genes encoding three heat shock proteins, as well as non-ribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs) was performed. This approach resulted in the description of two new genera (Hillbrichtia and Amphirytos) and their type species (Hillbrichtia pamiria and Amphirytos necridicus) representing Oscillatoriales and Synechococcales orders, respectively. We also found unique lineages inside the genus Thermoleptolyngbya, describing a novel species (T. hindakiae). We described the presence of sub-cosmopolitan taxa (such as Calothrix, Desertifilum, and Trichormus). Strains were diverse concerning their thermophilic ability with the strains well adapted to high temperatures possessing all three investigated genes encoding heat shock proteins as well as studied PKS and NRPS genes. In this work, we show novel cyanobacteria diversity from thermal springs from disparate environments, possible correlation of thermotolerance and their genetic background, which may have implications on strategic focusing of screening programs on underexploited taxa in these habitats.


Assuntos
Cianobactérias , Ecossistema , DNA Bacteriano/genética , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
7.
J Fish Biol ; 100(5): 1223-1232, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35244939

RESUMO

The Balbiani body (Bb) was examined in primary growth phase oocytes for the first time in two clupeoid fish species, the Mediterranean sardine, Sardina pilchardus, and the European anchovy, Engraulis encrasicolus, which belong to different families, Clupeidae and Engraulidae, respectively. Cytoplasmic morphological changes of early secondary growth oocytes were also investigated using confocal laser scanning microscopy, light and transmission electron microscopy. The ultrastructural observations showed that the two species develop a distinct spherical Bb. However, differences in the cytoplasm, mainly in the perinuclear area, were observed. Briefly, in sardine the Bb coexists with a thick perinuclear ring containing mitochondria, nuage, endoplasmic reticulum and small vesicles, while in anchovy this perinuclear ring is thinner, consisting of complexes of nuage and mitochondria. After the disassembly of the Bb, a prominent cytoplasmic zonation develops in the secondary growth oocytes of sardine and anchovy, although with different organelle distribution between the two species. Sardine oocytes exhibit a thick zone of endoplasmic reticulum around the nucleus, whereas in those of anchovy, a thick mitochondria-rich ring surrounding the nucleus was observed. The cytoplasmic characteristics, such as the perinuclear ring in primary oocytes in sardine and the mitochondria-rich ring of early secondary oocytes in anchovy, are also discernible in histological sections by standard procedures and could thus be used as indicators of maturity or imminent spawning period in routine light microscopy observations, providing a valuable tool for applied fisheries biology.


Assuntos
Peixes , Oogênese , Animais , Núcleo Celular , Citoplasma , Oócitos/ultraestrutura
8.
J Cell Physiol ; 236(2): 1529-1544, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32749687

RESUMO

Exosome selectivity mechanisms underlying exosome-target cell interactions and the specific traits affecting their capability to communicate still remain unclear. Moreover, the capacity of exosomes to efficiently deliver their molecular cargos intracellularly needs precise investigation towards establishing functional exosome-based delivery platforms exploitable in the clinical practice. The current study focuses on: (a) exosome production from normal MRC-5 and Vero cells growing in culture, (b) physicochemical characterization by dynamic light scattering (DLS) and cryo-transmission electron microscopy; (c) cellular uptake studies of rhodamine-labeled exosomes in normal and cancer cells, providing to exosomes either "autologous" or "heterologous" cellular delivery environments; and (d) loading exogenous Alexa Fluor 488-labeled siRNA into exosomes for the assessment of their delivering capacity by immunofluorescence in a panel of recipient cells. The data obtained thus far indicate that MRC-5 and Vero exosomes, indeed exhibit an interesting delivering profile, as promising "bio-shuttles," being pharmacologically exploitable in the context of theranostic applications.


Assuntos
Sistemas de Liberação de Medicamentos , Exossomos/química , MicroRNAs/uso terapêutico , RNA Interferente Pequeno/uso terapêutico , Animais , Comunicação Celular/genética , Linhagem Celular Tumoral , Chlorocebus aethiops , Microscopia Crioeletrônica , Exossomos/genética , Humanos , MicroRNAs/química , RNA Interferente Pequeno/química , Células Vero
9.
Mol Phylogenet Evol ; 155: 106991, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33098986

RESUMO

Cyanobacteria are often reported as abundant components of the sponge microbiome; however their diversity below the phylum level is still underestimated. Aiming to broaden our knowledge of sponge-cyanobacteria association, we isolated cyanobacterial strains from Aegean Sea sponges in previous research, which revealed high degree of novel cyanobacterial diversity. Herein, we aim to further characterize sponge-associated cyanobacteria and re-evaluate their classification based on an extensive polyphasic approach, i.e. a combination of molecular, morphological and ecological data. This approach resulted in the description of five new genera (Rhodoploca, Cymatolege, Metis, Aegeococcus, and Thalassoporum) and seven new species (R. sivonenia, C. spiroidea, C. isodiametrica, M. fasciculata, A. anagnostidisi, A. thureti, T. komareki) inside the order Synechococcales, and a new pleurocapsalean species (Xenococcus spongiosum). X. spongiosum is a baeocyte-producing species that shares some morphological features with other Xenococcus species, but has distinct phylogenetic and ecological identity. Rhodoploca, Cymatolege, Metis and Thalassoporum are novel well supported linages of filamentous cyanobacteria that possess distinct characters compared to their sister taxa. Aegeococcus is a novel monophyletic linage of Synechococcus-like cyanobacteria exhibiting a unique ecology, as sponge-dweller. The considerable number of novel taxa characterized in this study highlights the importance of employing polyphasic culture-dependent approaches in order to reveal the true cyanobacterial diversity associated with sponges.


Assuntos
Cianobactérias/classificação , Poríferos/microbiologia , Animais , Sequência de Bases , Cianobactérias/genética , Cianobactérias/ultraestrutura , DNA Espaçador Ribossômico/genética , Conformação de Ácido Nucleico , Ficobiliproteínas/metabolismo , Filogenia , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética
10.
Ecotoxicol Environ Saf ; 208: 111386, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33035915

RESUMO

The present work aims to provide insight into interactions between trace metals and higher plants, focusing on nickel uptake and its effects in seagrasses at environmentally relevant concentrations. Total and intracellular nickel accumulation kinetics, nickel effects on structural cell components, oxidative stress marker and cellular viability, and the accumulation kinetics-toxic effects relationship were investigated in leaves of Halophila stipulacea plants incubated in seawater under laboratory conditions containing nickel ions at 0.01-10 mg L-1 for 14 days. Nickel accumulation kinetics in H. stipulacea young and older apical leaves followed a Michaelis-Menten-type equation, allowing the calculation of uptake parameters; uptake rate (Vc) and equilibrium concentration (Ceq) tended to increase with the increase of nickel concentration in the medium. A dose- and uptake parameter-dependent actin filament (AF) and endoplasmic reticulum (ER) impairment was observed, whereas no effects occurred on microtubules and cell ultrastructure. AF disturbance and ER aggregation were firstly observed in differentiated cells at the lowest concentration on the 12th and 14th day, respectively, while AF disruption in meristematic cells firstly occurred at 0.05 mg L-1; the effects appeared earlier and were more acute at higher concentrations. Increased H2O2 levels were detected, while, at the highest exposures, a significant reduction in epidermal cell viability in older leaves occurred. The lowest total nickel concentrations in young leaves associated with AF disturbance onset at nickel exposure concentrations of 0.01-1 mg L-1 varied between 18.98 and 63.93 µg g-1 dry wt; importantly, they were comparable to nickel concentrations detected in seagrass leaves from various locations. The relationships between exposure concentration, uptake kinetic parameters and toxic effect onset were satisfactorily described by regression models. Our findings suggest that (a) nickel may pose a threat to seagrass meadows, (b) H. stipulacea can be regarded as an efficient biomonitor of nickel, (c) AF and ER impairment in seagrass leaves can be considered as early biomarkers of nickel-induced stress, and (d) the regression models obtained can be used as a tool to evaluate ambient nickel levels and to detect ecotoxicologically significant nickel contamination. The data presented can be utilized in the management and conservation of the coastal environment.


Assuntos
Hydrocharitaceae/metabolismo , Níquel/metabolismo , Poluentes Químicos da Água/metabolismo , Transporte Biológico , Biomarcadores/análise , Sobrevivência Celular/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Cinética , Microtúbulos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Água do Mar/química , Oligoelementos/análise
11.
Int J Mol Sci ; 22(3)2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-33573354

RESUMO

Cytokinesis is accomplished in higher plants by the phragmoplast, creating and conducting the cell plate to separate daughter nuclei by a new cell wall. The microtubule-severing enzyme p60-katanin plays an important role in the centrifugal expansion and timely disappearance of phragmoplast microtubules. Consequently, aberrant structure and delayed expansion rate of the phragmoplast have been reported to occur in p60-katanin mutants. Here, the consequences of p60-katanin malfunction in cell plate/daughter wall formation were investigated by transmission electron microscopy (TEM), in root cells of the fra2 Arabidopsis thaliana loss-of-function mutant. In addition, deviations in the chemical composition of cell plate/new cell wall were identified by immunolabeling and confocal microscopy. It was found that, apart from defective phragmoplast microtubule organization, cell plates/new cell walls also appeared faulty in structure, being unevenly thick and perforated by large gaps. In addition, demethylesterified homogalacturonans were prematurely present in fra2 cell plates, while callose content was significantly lower than in the wild type. Furthermore, KNOLLE syntaxin disappeared from newly formed cell walls in fra2 earlier than in the wild type. Taken together, these observations indicate that delayed cytokinesis, due to faulty phragmoplast organization and expansion, results in a loss of synchronization between cell plate growth and its chemical maturation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Parede Celular/metabolismo , Citocinese/fisiologia , Katanina/metabolismo , Arabidopsis/citologia , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/genética , Parede Celular/ultraestrutura , Katanina/genética , Microscopia Eletrônica de Transmissão , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Raízes de Plantas/citologia , Raízes de Plantas/metabolismo , Raízes de Plantas/ultraestrutura , Plantas Geneticamente Modificadas , Proteínas Qa-SNARE/metabolismo
12.
Molecules ; 26(10)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34069787

RESUMO

We evaluated photosystem II (PSII) functionality in potato plants (Solanum tuberosum L.) before and after a 15 min feeding by the leaf miner Tuta absoluta using chlorophyll a fluorescence imaging analysis combined with reactive oxygen species (ROS) detection. Fifteen minutes after feeding, we observed at the feeding zone and at the whole leaf a decrease in the effective quantum yield of photosystem II (PSII) photochemistry (ΦPSII). While at the feeding zone the quantum yield of regulated non-photochemical energy loss in PSII (ΦNPQ) did not change, at the whole leaf level there was a significant increase. As a result, at the feeding zone a significant increase in the quantum yield of non-regulated energy loss in PSII (ΦNO) occurred, but there was no change at the whole leaf level compared to that before feeding, indicating no change in singlet oxygen (1O2) formation. The decreased ΦPSII after feeding was due to a decreased fraction of open reaction centers (qp), since the efficiency of open PSII reaction centers to utilize the light energy (Fv'/Fm') did not differ before and after feeding. The decreased fraction of open reaction centers resulted in increased excess excitation energy (EXC) at the feeding zone and at the whole leaf level, while hydrogen peroxide (H2O2) production was detected only at the feeding zone. Although the whole leaf PSII efficiency decreased compared to that before feeding, the maximum efficiency of PSII photochemistry (Fv/Fm), and the efficiency of the water-splitting complex on the donor side of PSII (Fv/Fo), did not differ to that before feeding, thus they cannot be considered as sensitive parameters to monitor biotic stress effects. Chlorophyll fluorescence imaging analysis proved to be a good indicator to monitor even short-term impacts of insect herbivory on photosynthetic function, and among the studied parameters, the reduction status of the plastoquinone pool (qp) was the most sensitive and suitable indicator to probe photosynthetic function under biotic stress.


Assuntos
Enterobius/fisiologia , Luz , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/parasitologia , Folhas de Planta/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo , Solanum tuberosum/parasitologia , Solanum tuberosum/efeitos da radiação , Animais , Transporte de Elétrons , Comportamento Alimentar , Peróxido de Hidrogênio/metabolismo , Teoria Quântica
13.
J Eukaryot Microbiol ; 67(6): 660-670, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32682339

RESUMO

Symbioses between sponges and photosynthetic organisms are very diverse regarding the taxonomy and biogeography of both hosts and symbionts; to date, most research has focused on the exploration of bacterial diversity. The present study aims to characterize the culturable diversity of photosynthetic eukaryotes associated with sponges in the Aegean Sea, on which no information exists. Five microalgae strains were isolated from marine sponges; the strains were characterized by morphological features, and the 18S rRNA, 18S-28S Internal Transcribed Spacer, and ribulose-bisphosphate carboxylase large chain (rbcL) sequences. Our polyphasic approach showed that the strains belonged to the green-alga Acrochaete leptochaete, the diatom Nanofrustulum cf. shiloi, the rhodophyte Acrochaetium spongicola, and the chlorachniophyte Lotharella oceanica. A. leptochaete is reported for the first time in sponges, even though green algae are known to be associated with sponges. Nanofrustulum shiloi was found in association with the sponges Agelas oroides and Chondrilla nucula, whereas information existed only for its association with the species Aplysina aerophoba. Acrochaetium spongicola was found for the first time in association with sponges in the eastern Mediterranean. Moreover, we report herein for the first time a sponge-chlorarachniophycean association. Our research revealed new diversity of microalgae associated with sponges and added new records of sponge species, previously unknown for their association with microalgae.


Assuntos
Microalgas/classificação , Microalgas/genética , Poríferos/microbiologia , Animais , Biodiversidade , DNA de Algas/genética , Interações entre Hospedeiro e Microrganismos , Microalgas/isolamento & purificação , Fotossíntese , Filogenia , RNA Ribossômico 18S/genética , Água do Mar/microbiologia , Análise de Sequência de DNA , Simbiose
14.
Ecotoxicol Environ Saf ; 189: 109925, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31855841

RESUMO

Information on silver nanoparticle (AgNP) phytotoxicity on seagrasses is provided for the first time. Toxic effects of environmentally relevant AgNP concentrations on Halophila stipulacea were assessed to identify sensitive biomarkers, to determine threshold effect concentrations and to evaluate potential risks. Potential alterations in the cytoskeleton, endoplasmic reticulum, cell ultrastructure and viability, oxidative stress parameters and elongation in H. stipulacea leaves exposed to AgNP concentrations ranging from 0.0002 to 0.2 mg L-1 for 8 days were examined. The first signs of actin filament (AF) response in differentiating cells, exhibiting disorientation and slight bundling, were observed on the 4th day at 0.0002 mg L-1, while at the end of the experiment and at the higher concentrations, AFs were extremely bundled. Endoplasmic reticulum was affected in meristematic and differentiating cells; massive aggregations and loss of the "grainy" structure were observed, initially on the 6th day at 0.002 mg L-1. Effects on microtubules were detected on the last day at 0.2 mg L-1. An increase in H2O2 levels on the 4th and/or 6th day even at 0.0002 mg L-1 was followed by a decrease on, or up to the last day. On the 6th day at the lowest concentration, elevated malondialdehyde content, and superoxide dismutase and peroxidase activity were detected, indicating oxidative damage and antioxidant defense mechanism activation. Dead epidermal cells mainly occurred at 0.02 and 0.2 mg L-1, while no dead vein cells were detected. A significant inhibition in leaf elongation was observed only at 0.2 mg L-1. Therefore, AF disturbance in differentiating leaf cells, being a susceptible response parameter, could be regarded as an early warning indicator of risk posed by AgNPs to H. stipulacea meadows, while most of the remaining parameters examined also constitute useful biomarkers. The lowest observed effect concentration (0.0002 mg L-1), being within the range of environmentally relevant AgNPs concentrations, suggests the possibility of negative impacts of AgNPs on seagrass health. A risk quotient of 1.33 was calculated, indicating that AgNPs may pose a significant potential risk to the coastal environment. The data presented highlight the importance of future research to further investigate the seagrass-AgNP interactions, stress the need for a refinement of the environmental risk assessment of AgNPs and could be utilized for the design of biomonitoring programs for rational management of the coastal environment.


Assuntos
Hydrocharitaceae/fisiologia , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Antioxidantes/farmacologia , Citoesqueleto/efeitos dos fármacos , Hydrocharitaceae/efeitos dos fármacos , Peróxido de Hidrogênio , Malondialdeído/farmacologia , Microtúbulos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Superóxido Dismutase/análise
15.
Int J Mol Sci ; 21(24)2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33348912

RESUMO

Microcystins (MCs) are cyanobacterial toxins and potent inhibitors of protein phosphatases 1 (PP1) and 2A (PP2A), which are involved in plant cytoskeleton (microtubules and F-actin) organization. Therefore, studies on the toxicity of cyanobacterial products on plant cells have so far been focused on MCs. In this study, we investigated the effects of extracts from 16 (4 MC-producing and 12 non-MC-producing) cyanobacterial strains from several habitats, on various enzymes (PP1, trypsin, elastase), on the plant cytoskeleton and H2O2 levels in Oryza sativa (rice) root cells. Seedling roots were treated for various time periods (1, 12, and 24 h) with aqueous cyanobacterial extracts and underwent either immunostaining for α-tubulin or staining of F-actin with fluorescent phalloidin. 2,7-dichlorofluorescein diacetate (DCF-DA) staining was performed for H2O2 imaging. The enzyme assays confirmed the bioactivity of the extracts of not only MC-rich (MC+), but also MC-devoid (MC-) extracts, which induced major time-dependent alterations on both components of the plant cytoskeleton. These findings suggest that a broad spectrum of bioactive cyanobacterial compounds, apart from MCs or other known cyanotoxins (such as cylindrospermopsin), can affect plants by disrupting the cytoskeleton.


Assuntos
Carcinógenos/toxicidade , Cianobactérias/metabolismo , Microcistinas/toxicidade , Microtúbulos/efeitos dos fármacos , Oryza/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Oryza/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento
16.
Mol Pharm ; 16(6): 2326-2341, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31026168

RESUMO

Combination therapy has been conferred with manifold assets leveraging the synergy of different agents to achieve a sufficient therapeutic outcome with lower administered drug doses and reduced side effects. The therapeutic potency of a self-assembling peptide hydrogel for the co-delivery of doxorubicin and curcumin was assessed against head and neck cancer cells. The dual loaded peptide hydrogel enabled control over the rate of drug release based on drug's aqueous solubility. A significantly enhanced cell growth inhibitory effect was observed after treatment with the combination drug-loaded hydrogel formulations compared to the respective combination drug solution. The synergistic pharmacological effect of selected hydrogel formulations was further confirmed with enhanced apoptotic cell response, interference in cell cycle progression, and significantly altered apoptotic/anti-apoptotic gene expression profiles obtained in dose levels well below the half-maximal inhibitory concentrations of both drugs. The in vivo antitumor efficacy of the drug-loaded peptide hydrogel formulation was confirmed in HSC-3 cell-xenografted severe combined immunodeficient mice and visualized with µCT imaging. Histological and terminal deoxynucleotidyl transferase dUTP nick end labeling assay analyses of major organs were implemented to assess the safety of the topically administered hydrogel formulation. Overall, results demonstrated the therapeutic utility of the dual drug-loaded peptide hydrogel as a pertinent approach for the local treatment of head and neck cancer.


Assuntos
Curcumina/uso terapêutico , Doxorrubicina/uso terapêutico , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Hidrogéis/química , Peptídeos/química , Animais , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Curcumina/química , Doxorrubicina/química , Sistemas de Liberação de Medicamentos/métodos , Feminino , Citometria de Fluxo , Humanos , Camundongos , Camundongos SCID , Microscopia de Força Atômica , Reologia , Ensaios Antitumorais Modelo de Xenoenxerto
17.
J Phycol ; 55(4): 882-897, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31001838

RESUMO

Cyanobacterial diversity associated with sponges remains underestimated, though it is of great scientific interest in order to understand the ecology and evolutionary history of the symbiotic relationships between the two groups. Of the filamentous cyanobacteria, the genus Leptolyngbya is the most frequently found in association with sponges as well as the largest and obviously polyphyletic group. In this study, five Leptolyngbya-like sponge-associated isolates were investigated using a combination of molecular, chemical, and morphological approach and revealed a novel marine genus herein designated Leptothoe gen. nov. In addition, three new species of Leptothoe, Le. sithoniana, Le. kymatousa, and Le. spongobia, are described based on a suite of distinct characters compared to other marine Leptolyngbyaceae species/strains. The three new species, hosted by four sponge species, showed different degrees of host specificity. Leptothoe sithoniana and Le. kymatousa hosted by the sponges Petrosia ficiformis and Chondrilla nucula, respectively, seem to be more specialized than Le. spongobia, which was hosted by the sponges Dysidea avara and Acanthella acuta. All three species contained nitrogen-fixing genes and may contribute to the nitrogen budget of sponges. Leptothoe spongobia TAU-MAC 1115 isolated from Acanthella acuta was shown to produce microcystin-RR indicating that microcystin production among marine cyanobacteria could be more widespread than previously determined.


Assuntos
Cianobactérias , Filogenia , RNA Ribossômico 16S , Simbiose
18.
Pharm Res ; 35(8): 166, 2018 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-29943122

RESUMO

PURPOSE: Localized chemotherapy has gained significant impetus for the management of malignant brain tumors. In the present study, we appraised the versatility of an in-situ gel forming self-assembling peptide, ac-(RADA)4-CONH2, as a biocompatible delivery depot of the chemotherapeutic drug doxorubicin (DOX) and the anticancer agent curcumin (CUR), respectively. METHODS: The morphology and mechanical properties of ac-(RADA)4-CONH2 were assessed with scanning electron microscopy (SEM) and rheological studies. The in vitro drug release from ac-(RADA)4-CONH2 was monitored in phosphate-buffered saline pH 7.4. Distribution of the fluorescent actives within the peptide matrix was visualized with confocal laser scanning microscopy (CLSM). The in vitro biological performance of the ac-(RADA)4-CONH2-DOX and ac-(RADA)4-CONH2-CUR was evaluated on the human glioblastoma U-87 MG cell line. RESULTS: SEM studies revealed that the ac-(RADA)4-CONH2 hydrogel contains an entangled nanofiber network. Rheology studies showed that the more hydrophobic CUR resulted in a stiffer hydrogel compared with ac-(RADA)4-CONH2 and ac-(RADA)4-CONH2-DOX, due to the interaction of CUR with the hydrophobic domains of the peptide nanofibers as confirmed by CLSM. In vitro release studies showed a complete DOX release from ac-(RADA)4-CONH2 within 4 days and a prolonged release for ac-(RADA)4-CONH2-CUR over 20 days. An increased cellular uptake and a higher cytotoxic effect were observed for ac-(RADA)4-CONH2-DOX, compared with DOX solution. Higher levels of early apoptosis were observed for the cells treated with the ac-(RADA)4-CONH2-CUR, compared to CUR solution. CONCLUSIONS: The current findings highlight the potential utility of the in-situ depot forming ac-(RADA)4-CONH2 hydrogel for the local delivery of both water soluble and insoluble chemotherapeutic drugs.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias Encefálicas/tratamento farmacológico , Curcumina/administração & dosagem , Doxorrubicina/administração & dosagem , Portadores de Fármacos/química , Glioblastoma/tratamento farmacológico , Nanofibras/química , Peptídeos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Curcumina/farmacocinética , Curcumina/farmacologia , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Liberação Controlada de Fármacos , Humanos , Hidrogéis/química , Nanofibras/ultraestrutura
19.
Ecotoxicol Environ Saf ; 157: 431-440, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-29655159

RESUMO

Bisphenol A (BPA) is an emerging pollutant of environmental concern, classified as "moderately toxic" and "toxic", causing adverse effects on aquatic biota. Although information about BPA toxicity on aquatic fauna is available, the data about BPA effects on aquatic flora remain scarce, missing for marine macrophytes. The effects of environmentally relevant BPA concentrations (ranging from 0.03 to 3 µg L-1) on juvenile leaf elongation and the cytoskeleton (microtubules, MTs and actin filaments, AFs) were studied in the seagrass Cymodocea nodosa for 1-10 days. The suitability of cytoskeleton disturbance and leaf elongation impairment as "biomarkers" for BPA stress were tested. The highest BPA concentrations (0.3, 0.5, 1 and 3 µg L-1) affected significantly leaf elongation from the onset of the experiment, while defects of the cytoskeleton were observed even at lower concentrations. In particular, MTs were initially disrupted (i.e. "lowest observed effect concentrations", LOECs) at 0.1 µg L-1, while AFs were damaged even at 0.03 µg L-1. AFs appeared thus to be more sensitive to lower BPA concentrations, while there was a correlation between leaf elongation impairment and MT defects. Thus, AF damages, MT disruption and leaf elongation impairment in C. nodosa, in this particular order, appear to be sensitive "biomarkers" of BPA stress, at the above environmentally relevant BPA concentrations.


Assuntos
Alismatales/efeitos dos fármacos , Compostos Benzidrílicos/toxicidade , Fenóis/toxicidade , Folhas de Planta/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Microtúbulos/efeitos dos fármacos , Desenvolvimento Vegetal/efeitos dos fármacos
20.
Molecules ; 23(6)2018 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-29882773

RESUMO

Cellulose microfibrils reinforce the cell wall for morphogenesis in plants. Herein, we provide evidence on a series of defects regarding stomatal complex development and F-actin organization in Zea mays leaf epidermis, due to inhibition of cellulose synthesis. Formative cell divisions of stomatal complex ontogenesis were delayed or inhibited, resulting in lack of subsidiary cells and frequently in unicellular stomata, with an atypical stomatal pore. Guard cells failed to acquire a dumbbell shape, becoming rounded, while subsidiary cells, whenever present, exhibited aberrant morphogenesis. F-actin organization was also affected, since the stomatal complex-specific arrays were scarcely observed. At late developmental stages, the overall F-actin network was diminished in all epidermal cells, although thick actin bundles persisted. Taken together, stomatal complex development strongly depends on cell wall mechanical properties. Moreover, F-actin organization exhibits a tight relationship with the cell wall.


Assuntos
Actinas/metabolismo , Celulose/biossíntese , Folhas de Planta/metabolismo , Estômatos de Plantas/crescimento & desenvolvimento , Zea mays/metabolismo , Parede Celular/metabolismo , Germinação , Microscopia Confocal , Estômatos de Plantas/metabolismo , Zea mays/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA