Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
ACS Appl Bio Mater ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598256

RESUMO

Traditional tissue engineering methods face challenges, such as fabrication, implantation of irregularly shaped scaffolds, and limited accessibility for immediate healthcare providers. In situ bioprinting, an alternate strategy, involves direct deposition of biomaterials, cells, and bioactive factors at the site, facilitating on-site fabrication of intricate tissue, which can offer a patient-specific personalized approach and align with the principles of precision medicine. It can be applied using a handled device and robotic arms to various tissues, including skin, bone, cartilage, muscle, and composite tissues. Bioinks, the critical components of bioprinting that support cell viability and tissue development, play a crucial role in the success of in situ bioprinting. This review discusses in situ bioprinting techniques, the materials used for bioinks, and their critical properties for successful applications. Finally, we discuss the challenges and future trends in accelerating in situ printing to translate this technology in a clinical settings for personalized regenerative medicine.

2.
J Biomater Sci Polym Ed ; 33(12): 1531-1554, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35404217

RESUMO

There has been a growing interest in the scientific community to explore the complete potential of phytoconstituents, herbal or plant-based ingredients owing to a range of benefits they bring along. The herbal plants accommodate many phytoconstituents that are responsible for various activities such as anti-oxidant, antimicrobial, anticancer, anti-inflammatory, anti-allergic, hepatoprotective, etc. However, these phytoconstituents are highly sensitive to several environmental and physiological factors such as pH, oxygen, heat, temperature, humidity, stomach acid, enzymes, and light. Hence, there is need for the development of a drug delivery system that can protect the phytoconstituents from both internal and external conditions. In this regard, a microparticulate drug delivery system is considered amongst the ideal choice owing to its small size, ability to protect the environment-sensitive active constituents, in achieving sustained drug delivery, targeted drug delivery, protection of the drug from physiological conditions, minimizing drug-related side effects, etc.


Assuntos
Anti-Infecciosos , Sistemas de Liberação de Medicamentos , Anti-Inflamatórios/uso terapêutico , Nanotecnologia , Extratos Vegetais
3.
Drug Discov Today ; 26(4): 931-950, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33444788

RESUMO

Peptides and proteins have emerged as potential therapeutic agents and, in the search for the best treatment regimen, the oral route has been extensively evaluated because of its non-invasive and safe nature. The physicochemical properties of peptides and proteins along with the hurdles in the gastrointestinal tract (GIT), such as degrading enzymes and permeation barriers, are challenges to their delivery. To address these challenges, several conventional and novel approaches, such as nanocarriers, site-specific and stimuli specific delivery, are being used. In this review, we discuss the challenges to the oral delivery of peptides and the approaches used to tackle these challenges.


Assuntos
Administração Oral , Portadores de Fármacos/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Peptídeos , Proteínas , Disponibilidade Biológica , Trato Gastrointestinal/fisiologia , Humanos , Nanopartículas/uso terapêutico , Peptídeos/administração & dosagem , Peptídeos/farmacocinética , Proteínas/administração & dosagem , Proteínas/farmacocinética
4.
J Infect Dev Ctries ; 12(12): 1096-1104, 2018 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-32027611

RESUMO

INTRODUCTION: Lactobacillus dominated vaginal microenvironment is associated with lower risk of genital infections. Numerous studies have reported geographic and ethnic variations in vaginal microbiome structure between healthy individuals from different race and ethnicity. India has a great diversity, so it is intriguing to find out if such divergences exist in vaginal lactobacilli. The present study aimed to investigate predominant Lactobacillus species in vaginas of healthy Indian women and screen isolates for lactic acid and H2O2 production. METHODOLOGY: 203 premenopausal women asymptomatic for any vaginal complaints were recruited. The lactobacilli isolates on MRS agar were identified by Multiplex-PCR and 16sRNA gene sequencing. RAPD was used to differentiate strains of same species. H2O2 and lactic acid was evaluated on TMB-HRP MRS agar and BCP-MRS agar respectively. RESULTS: Lactobacilli were recovered from 107/109 (98.2%) women with normal microflora. L. iners 64.7% (68), L. crispatus 26.7% (28), L. reuteri 21.9% (23), L. jensenii 16.2% (17) and L. gasseri 15.2% (16) were the most frequently occurring vaginal lactobacilli in normal women. The vaginal microflora was dominated by either by a single (80%, n = 84) or a combination (20%, n = 21) of Lactobacillus species. Though most frequently identified, L. iners, coexisted only with other Lactobacillus species. All isolates were acid producers but H2O2 was produced by 94.2% isolates. CONCLUSIONS: Our study reports prevalent vaginal lactobacilli which could be explored as probiotics. Presence of heterogeneous Lactobacillus population highlights the cumulative effects of different lactobacilli maintaining vaginal health. Contrasting observations about L. iners reiterates its puzzling role in vaginal immunity, advocating further research.


Assuntos
Lactobacillus/fisiologia , Vagina/microbiologia , Adolescente , Adulto , Estudos Transversais , Feminino , Humanos , Peróxido de Hidrogênio/metabolismo , Índia , Ácido Láctico/metabolismo , Lactobacillus/isolamento & purificação , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Adulto Jovem
5.
Hum Gene Ther ; 26(2): 82-93, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25419577

RESUMO

Toca 511 (vocimagene amiretrorepvec), a nonlytic, amphotropic retroviral replicating vector (RRV), encodes and delivers a functionally optimized yeast cytosine deaminase (CD) gene to tumors. In orthotopic glioma models treated with Toca 511 and 5-fluorocytosine (5-FC) the CD enzyme within infected cells converts 5-FC to 5-fluorouracil (5-FU), resulting in tumor killing. Toca 511, delivered locally either by intratumoral injection or by injection into the resection bed, in combination with subsequent oral extended-release 5-FC (Toca FC), is under clinical investigation in patients with recurrent high-grade glioma (HGG). If feasible, intravenous administration of vectors is less invasive, can easily be repeated if desired, and may be applicable to other tumor types. Here, we present preclinical data that support the development of an intravenous administration protocol. First we show that intravenous administration of Toca 511 in a preclinical model did not lead to widespread or uncontrolled replication of the RVV. No, or low, viral DNA was found in the blood and most of the tissues examined 180 days after Toca 511 administration. We also show that RRV administered intravenously leads to efficient infection and spread of the vector carrying the green fluorescent protein (GFP)-encoding gene (Toca GFP) through tumors in both immune-competent and immune-compromised animal models. However, initial vector localization within the tumor appeared to depend on the mode of administration. Long-term survival was observed in immune-competent mice when Toca 511 was administered intravenously or intracranially in combination with 5-FC treatment, and this combination was well tolerated in the preclinical models. Enhanced survival could also be achieved in animals with preexisting immune response to vector, supporting the potential for repeated administration. On the basis of these and other supporting data, a clinical trial investigating intravenous administration of Toca 511 in patients with recurrent HGG is currently open and enrolling.


Assuntos
Neoplasias Encefálicas/terapia , Citosina Desaminase/genética , Proteínas Fúngicas/genética , Terapia Genética/métodos , Vetores Genéticos/farmacocinética , Glioma/terapia , Retroviridae/genética , Animais , Anticorpos Neutralizantes/análise , Antimetabólitos/farmacologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Ensaios Clínicos como Assunto , Citosina Desaminase/metabolismo , Citosina Desaminase/farmacocinética , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Flucitosina/farmacologia , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/farmacocinética , Expressão Gênica , Genes Reporter , Vetores Genéticos/administração & dosagem , Vetores Genéticos/química , Glioma/genética , Glioma/mortalidade , Glioma/patologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Injeções Intravenosas , Camundongos , Camundongos Nus , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacocinética , Retroviridae/imunologia , Análise de Sobrevida , Distribuição Tecidual
6.
Mol Ther Methods Clin Dev ; 1: 14024, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-26015967

RESUMO

Toca 511 is a novel retroviral replicating vector, encoding a modified yeast cytosine deaminase, administered to recurrent high grade glioma patients in Phase 1 trials by stereotactic, transcranial injection into the tumor or into the walls of the resection cavity. A key issue, with little published data, is vector biocompatibility with agents likely to be encountered in a neurosurgical setting. We tested biocompatibility of Toca 511 with: delivery devices; MRI contrast agents, including ProHance supporting coinjection for real time MRI-guided intratumoral delivery; hemostatic agents; biofluids (blood and cerebrospinal fluid); potential adjuvants; and a needleless vial adapter that reduces risk of accidental needle sticks. Toca 511 is stable upon thawing at ambient temperature for at least 6 hours, allowing sufficient time for administration, and its viability is not reduced in the presence of: stainless steel and silica-based delivery devices; the potential MRI contrast agent, Feraheme; ProHance at several concentrations; the hemostatic agent SURGIFOAM; blood; cerebrospinal fluid; and the needleless vial adapter. Toca 511 is not compatible with the hemostatic agent SURGICEL or with extended exposures to titanium-based biopsy needles.

7.
Int J Ayurveda Res ; 1(3): 187-91, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21170214
8.
Int J Ayurveda Res ; 1(2): 128-31, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20814529
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA