Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 273: 116090, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38364346

RESUMO

Airway epithelium, the first defense barrier of the respiratory system, facilitates mucociliary clearance against inflammatory stimuli, such as pathogens and particulates inhaled into the airway and lung. Inhaled particulate matter 2.5 (PM2.5) can penetrate the alveolar region of the lung, and it can develop and exacerbate respiratory diseases. Although the pathophysiological effects of PM2.5 in the respiratory system are well known, its impact on mucociliary clearance of airway epithelium has yet to be clearly defined. In this study, we used two different 3D in vitro airway models, namely the EpiAirway-full-thickness (FT) model and a normal human bronchial epithelial cell (NHBE)-based air-liquid interface (ALI) system, to investigate the effect of diesel exhaust particles (DEPs) belonging to PM2.5 on mucociliary clearance. RNA-sequencing (RNA-Seq) analyses of EpiAirway-FT exposed to DEPs indicated that DEP-induced differentially expressed genes (DEGs) are related to ciliary and microtubule function and inflammatory-related pathways. The exposure to DEPs significantly decreased the number of ciliated cells and shortened ciliary length. It reduced the expression of cilium-related genes such as acetylated α-tubulin, ARL13B, DNAH5, and DNAL1 in the NHBEs cultured in the ALI system. Furthermore, DEPs significantly increased the expression of MUC5AC, whereas they decreased the expression of epithelial junction proteins, namely, ZO1, Occludin, and E-cadherin. Impairment of mucociliary clearance by DEPs significantly improved the release of epithelial-derived inflammatory and fibrotic mediators such as IL-1ß, IL-6, IL-8, GM-CSF, MMP-1, VEGF, and S100A9. Taken together, it can be speculated that DEPs can cause ciliary dysfunction, hyperplasia of goblet cells, and the disruption of the epithelial barrier, resulting in the hyperproduction of lung injury mediators. Our data strongly suggest that PM2.5 exposure is directly associated with ciliary and epithelial barrier dysfunction and may exacerbate lung injury.


Assuntos
Lesão Pulmonar , Emissões de Veículos , Humanos , Emissões de Veículos/toxicidade , Lesão Pulmonar/metabolismo , Mucosa Respiratória , Material Particulado/metabolismo , Células Epiteliais , Epitélio
2.
Mol Plant Microbe Interact ; 36(4): 199-200, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37071003

RESUMO

Interactions between plants and microbes are ubiquitous. The outcomes of these interactions involve interkingdom communication, with myriad, diverse signals moving between microbes and their potential plant hosts. Years of biochemical, genetic, and molecular biology research have provided an overview of the landscape of the repertoires of effectors and elicitors encoded by microbes that allow them to stimulate and manipulate responses from their potential plant hosts. Similarly, considerable insight into the plant machinery and capacity for responding to microbes has been gained. The advent of new bioinformatics and modeling approaches has greatly contributed to our understanding of how these interactions occur, and it is expected that these tools, coupled with burgeoning genome sequencing data, will eventually allow the prediction of the outcome of these interactions and whether they will result in a relationship that benefits one or both partners. As a complement to these studies, cell biological studies are elucidating how cells in the plant hosts behave in response to microbial signals. Such studies have brought new attention to the indispensable role of the plant endomembrane system in determining the outcome of plant-microbe interactions. This Focus Issue addresses not only how the plant endomembrane acts locally to mediate responses to microbes but, also, the importance of the plant endomembrane beyond the plant cell borders for cross-kingdom effects. [Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2023.


Assuntos
Interações entre Hospedeiro e Microrganismos , Plantas , Plantas/microbiologia
3.
EMBO J ; 38(10)2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30979777

RESUMO

The multifunctional influenza virus protein PB1-F2 plays several roles in deregulation of host innate immune responses and is a known immunopathology enhancer of the 1918 influenza pandemic. Here, we show that the 1918 PB1-F2 protein not only interferes with the mitochondria-dependent pathway of type I interferon (IFN) signaling, but also acquired a novel IFN antagonist function by targeting the DEAD-box helicase DDX3, a key downstream mediator in antiviral interferon signaling, toward proteasome-dependent degradation. Interactome analysis revealed that 1918 PB1-F2, but not PR8 PB1-F2, binds to DDX3 and causes its co-degradation. Consistent with intrinsic protein instability as basis for this gain-of-function, internal structural disorder is associated with the unique cytotoxic sequences of the 1918 PB1-F2 protein. Infusing mice with recombinant DDX3 protein completely rescued them from lethal infection with the 1918 PB1-F2-producing virus. Alongside NS1 protein, 1918 PB1-F2 therefore constitutes a potent IFN antagonist causative for the severe pathogenicity of the 1918 influenza strain. Our identification of molecular determinants of pathogenesis should be useful for the future design of new antiviral strategies against influenza pandemics.


Assuntos
RNA Helicases DEAD-box/metabolismo , Influenza Humana/virologia , Interferons/metabolismo , Orthomyxoviridae/patogenicidade , Proteínas Virais/fisiologia , Células A549 , Animais , Cães , Feminino , Células HEK293 , História do Século XX , Humanos , Influenza Humana/epidemiologia , Influenza Humana/história , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos BALB C , Orthomyxoviridae/metabolismo , Pandemias , Proteólise , Transdução de Sinais , Células U937 , Proteínas Virais/metabolismo , Virulência/fisiologia
4.
J Gastroenterol Hepatol ; 37(2): 378-386, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34653281

RESUMO

BACKGROUND AND AIM: Besifovir dipivoxil maleate (BSV) was reported to have comparable antiviral efficacy and superior renal and bone safety to tenofovir disoproxil fumarate (TDF) in chronic hepatitis B (CHB) patients. The present study aims to evaluate changes of liver histology and intrahepatic covalently closed circular DNA (cccDNA) levels by BSV treatment in comparison with TDF therapy. METHODS: This is a subset study of the phase 3 trial comparing BSV with TDF. Among them, only CHB patients willing to participate in a histologic evaluation study were enrolled. Liver histologic examination and intrahepatic cccDNA quantification were performed. RESULTS: A total of 46 CHB patients received liver biopsies (BSV, n = 29; TDF, n = 17). After 48 weeks of treatment, virological response rate was comparable between the groups (P = 0.707). Follow-up liver biopsies showed that necroinflammation was significantly improved in the both groups. However, the histological response rate defined as the proportion of subjects whose modified histologic activity index score decreased by ≥ 2 without deterioration in fibrosis was higher in the BSV group than in the TDF group (77.8% vs 36.4%, P = 0.048). The proportion of subjects with Ishak fibrosis score 3 or more decreased from 77.7% to 55.5% in the BSV and that decreased from 72.7% to 45.4% in the TDF group. The intrahepatic cccDNA significantly decreased from baseline after 48 weeks of BSV or TDF treatment (P < 0.001) without intergroup differences (P = 0.349). CONCLUSIONS: The BSV therapy improves hepatic histology and decreases intrahepatic cccDNA in CHB patients.


Assuntos
DNA Circular , Guanina/análogos & derivados , Hepatite B Crônica , Fígado , Organofosfonatos , Antivirais/uso terapêutico , DNA Circular/efeitos dos fármacos , Guanina/uso terapêutico , Hepatite B Crônica/tratamento farmacológico , Humanos , Fígado/efeitos dos fármacos , Fígado/patologia , Organofosfonatos/uso terapêutico , Resultado do Tratamento
5.
Int J Mol Sci ; 23(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35562987

RESUMO

The ubiquitin system denotes a potent post-translational modification machinery that is capable of activation or deactivation of target proteins through reversible linkage of a single ubiquitin or ubiquitin chains. Ubiquitination regulates major cellular functions such as protein degradation, trafficking and signaling pathways, innate immune response, antiviral defense, and virus replication. The RNA sensor RIG-I ubiquitination is specifically induced by influenza A virus (IAV) to activate type I IFN production. Influenza virus modulates the activity of major antiviral proteins in the host cell to complete its full life cycle. Its structural and non-structural proteins, matrix proteins and the polymerase complex can regulate host immunity and antiviral response. The polymerase PB1-F2 of mutated 1918 IAV, adapts a novel IFN antagonist function by sending the DDX3 into proteasomal degradation. Ultimately the fate of virus is determined by the outcome of interplay between viral components and host antiviral proteins and ubiquitination has a central role in the encounter of virus and its host cell.


Assuntos
Vírus da Influenza A , Influenza Humana , Infecções por Orthomyxoviridae , Ubiquitinação , Humanos , Imunidade Inata , Vírus da Influenza A/metabolismo , Influenza Humana/metabolismo , Ubiquitina/metabolismo , Ubiquitinação/fisiologia , Replicação Viral/genética
6.
Int J Mol Sci ; 22(4)2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33562603

RESUMO

Tenofovir disoproxil fumarate (TDF) has been regarded as the most potent drug for treating patients with chronic hepatitis B (CHB). However recently, viral mutations associated with tenofovir have been reported. Here, we found a CHB patient with suboptimal response after more than 4 years of TDF treatment. Clonal analysis of hepatitis B virus (HBV) isolated from sequential sera of this patient identified the seven previously reported TDF-resistant mutations (CYELMVI). Interestingly, a threonine to alanine mutation at the 301 amino acid position of the reverse-transcriptase (RT) domain, (rtT301A), was commonly accompanied with CYELMVI at a high rate (72.7%). Since the rtT301A mutation has not been reported yet, we investigated the role of this naturally occurring mutation on the viral replication and susceptibility to tenofovir in various liver cells (hepatoma cells as well as primary human hepatocytes). A cell-based phenotypic assay revealed that the rtT301A mutation dramatically impaired the replication ability with meaningful reduction in sensitivity to tenofovir in hepatoma cell lines. However, attenuated viral replication by the rtT301A mutation was significantly restored in primary human hepatocytes (PHHs). Our findings suggest that the replication capability and drug sensitivity of HBV is different between hepatoma cell lines and PHHs. Therefore, our study emphasizes that validation studies should be performed not only in the liver cancer cell lines but also in the PHHs to understand the exact viral fitness under antiviral pressure in patients.


Assuntos
Vírus da Hepatite B/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/virologia , Tenofovir/farmacologia , Antivirais/farmacologia , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Células Cultivadas , Farmacorresistência Viral/genética , Feminino , Genes Virais , Células Hep G2 , Vírus da Hepatite B/genética , Vírus da Hepatite B/fisiologia , Hepatite B Crônica/tratamento farmacológico , Hepatite B Crônica/genética , Hepatite B Crônica/virologia , Hepatócitos/metabolismo , Humanos , Neoplasias Hepáticas/genética , Pessoa de Meia-Idade , Mutação Puntual , DNA Polimerase Dirigida por RNA/genética , Inibidores da Transcriptase Reversa/farmacologia , Proteínas Virais/genética , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética
7.
Plant J ; 98(1): 112-125, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30556202

RESUMO

Plant pyruvate decarboxylases (PDC) catalyze the decarboxylation of pyruvate to form acetaldehyde and CO2 and are well known to play a key role in energy supply via fermentative metabolism in oxygen-limiting conditions. In addition to their role in fermentation, plant PDCs have also been hypothesized to be involved in aroma formation although, to date, there is no direct biochemical evidence for this function. We investigated the role of PDCs in fruit volatile biosynthesis, and identified a melon pyruvate decarboxylase, PDC1, that is highly expressed in ripe fruits. In vitro biochemical characterization of the recombinant PDC1 enzyme showed that it could not only decarboxylate pyruvate, but that it also had significant activity toward other straight- and branched-chain α-ketoacids, greatly expanding the range of substrates previously known to be accepted by the plant enzyme. RNAi-mediated transient and stable silencing of PDC1 expression in melon showed that this gene is involved in acetaldehyde, propanal and pentanal production, while it does not contribute to branched-chain amino acid (BCAA)-derived aldehyde biosynthesis in melon fruit. Importantly, our results not only demonstrate additional functions for the PDC enzyme, but also challenge the long standing hypothesis that PDC is involved in BCAA-derived aldehyde formation in fruit.


Assuntos
Acetaldeído/metabolismo , Aldeídos/metabolismo , Carboxiliases/metabolismo , Cucumis melo/enzimologia , Regulação da Expressão Gênica de Plantas , Carboxiliases/genética , Cucumis melo/genética , Frutas/enzimologia , Frutas/genética , Perfilação da Expressão Gênica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Pirúvico/metabolismo
8.
Mol Plant Microbe Interact ; 33(11): 1330-1339, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32781924

RESUMO

In hot pepper, the sesquiterpene phytoalexin capsidiol is catalyzed by the two final-step enzymes, a sesquiterpene cyclase (EAS) and a hydroxylase (EAH), which are genetically linked and present as head-to-head orientation in the genome. Transcriptomic analysis revealed that a subset of EAS and EAH is highly induced following pathogen infection, suggesting the coregulation of EAS and EAH by a potential bidirectional activity of the promoter (pCaD). A series of the nested deletions of pCaD in both directions verified the bidirectional promoter activity of the pCaD. Promoter deletion analysis revealed that the 226 bp of the adjacent promoter region of EAS and GCC-box in EAH orientation were determined as critical regulatory elements for the induction of each gene. Based on promoter analyses, we generated a set of synthetic promoters to maximize reporter gene expression within the minimal length of the promoter in both directions. We found that the reporter gene expression was remarkably induced upon infection with Phytophthora capsici, Phytophthora infestans, and bacterial pathogen Pseudomonas syringae pv. tomato DC3000 but not with necrotrophic fungi Botrytis cinerea. Our results confirmed the bidirectional activity of the pCaD located between the head-to-head oriented phytoalexin biosynthetic genes in hot pepper. Furthermore, the synthetic promoter modified in pCaD could be a potential tool for pathogen-inducible expression of target genes for developing disease-resistant crops.[Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Capsicum , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética , Regiões Promotoras Genéticas , Capsicum/genética , Phytophthora/patogenicidade , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Pseudomonas syringae/patogenicidade
9.
Plant Cell ; 29(7): 1571-1584, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28619883

RESUMO

Pathogenic gram-negative bacteria cause serious diseases in animals and plants. These bacterial pathogens use the type III secretion system (T3SS) to deliver effector proteins into host cells; these effectors then localize to different subcellular compartments to attenuate immune responses by altering biological processes of the host cells. The fluorescent protein (FP)-based approach to monitor effectors secreted from bacteria into the host cells is not possible because the folded FP prevents effector delivery through the T3SS Therefore, we optimized an improved variant of self-assembling split super-folder green fluorescent protein (sfGFPOPT) system to investigate the spatiotemporal dynamics of effectors delivered through bacterial T3SS into plant cells. In this system, effectors are fused to 11th ß-strand of super-folder GFP (sfGFP11), and when delivered into plant cells expressing sfGFP1-10 ß-strand (sfGFP1-10OPT), the two proteins reconstitute GFP fluorescence. We generated a number of Arabidopsis thaliana transgenic lines expressing sfGFP1-10OPT targeted to various subcellular compartments to facilitate localization of sfGFP11-tagged effectors delivered from bacteria. We demonstrate the efficacy of this system using Pseudomonas syringae effectors AvrB and AvrRps4 in Nicotiana benthamiana and transgenic Arabidopsis plants. The versatile split sfGFPOPT system described here will facilitate a better understanding of bacterial invasion strategies used to evade plant immune responses.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Imagem Molecular/métodos , Doenças das Plantas/microbiologia , Pseudomonas syringae/patogenicidade , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Bactérias/genética , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Interações Hospedeiro-Patógeno , Fragmentos de Peptídeos/análise , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Plantas Geneticamente Modificadas , Dobramento de Proteína , Pseudomonas syringae/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Nicotiana/genética , Nicotiana/microbiologia
10.
Liver Int ; 40(7): 1564-1577, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32216026

RESUMO

BACKGROUND AND AIM: Since polymerase and surface genes overlap in hepatitis B virus (HBV), an antiviral-induced mutation in the polymerase gene may alter the surface antigenicity in patients with chronic hepatitis B (CHB), but this possibility has not been clearly confirmed. This study aimed to determine the drug susceptibility and surface antigenicity of the patient-derived mutants. PATIENTS AND METHODS: Full-length HBV genomes isolated from four entecavir-resistant CHB patients were cloned and sequenced. Around 10 clones of full-length HBV obtained from each patient were analysed and registered in the NCBI GenBank. Representative clones were further characterized by in vitro drug susceptibility and surface antigenicity assays. RESULTS: The rtL180M + rtM204V mutations were common among all the clones analysed. Additionally, the ETV resistance mutations rtT184A/L, rtS202G and rtM250V were found among three patients. Most of the ETV-resistant mutants had amino acid alterations within the known epitopes recognized by T- and B-cells in the HBV surface and core antigens. The in vitro drug susceptibility assay showed that all tested clones were resistant to ETV treatment. However, they were all susceptible to ADV and TDF. More importantly, the rtI169T mutation in the RT domain, led to the sF161L mutation in the overlapping S gene, which decreased in surface antigenicity. CONCLUSIONS: The ETV resistance mutations can affect the antigenicity of the HBsAg proteins due to changes in the overlapping sequence of this surface antigen. Thus, the apparent decline or disappearance of HBsAg needs to be interpreted cautiously in patients with previous or current antiviral resistance mutations.


Assuntos
Vírus da Hepatite B , Hepatite B Crônica , Antígenos de Superfície/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , Farmacorresistência Viral/genética , Guanina/análogos & derivados , Guanina/uso terapêutico , Vírus da Hepatite B/genética , Hepatite B Crônica/tratamento farmacológico , Humanos , Lamivudina/uso terapêutico , Mutação
11.
Int J Mol Sci ; 21(3)2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32023898

RESUMO

Hepatitis B virus (HBV) infection is a major factor in the development of various liver diseases such as hepatocellular carcinoma (HCC). Among HBV encoded proteins, HBV X protein (HBx) is known to play a key role in the development of HCC. Hepatocyte nuclear factor 4α (HNF4α) is a nuclear transcription factor which is critical for hepatocyte differentiation. However, the expression level as well as its regulatory mechanism in HBV infection have yet to be clarified. Here, we observed the suppression of HNF4α in cells which stably express HBV whole genome or HBx protein alone, while transient transfection of HBV replicon or HBx plasmid had no effect on the HNF4α level. Importantly, in the stable HBV- or HBx-expressing hepatocytes, the downregulated level of HNF4α was restored by inhibiting the ERK signaling pathway. Our data show that HNF4α was suppressed during long-term HBV infection in cultured HepG2-NTCP cells as well as in a mouse model following hydrodynamic injection of pAAV-HBV or in mice intravenously infected with rAAV-HBV. Importantly, HNF4α downregulation increased cell proliferation, which contributed to the formation and development of tumor in xenograft nude mice. The data presented here provide proof of the effect of HBV infection in manipulating the HNF4α regulatory pathway in HCC development.


Assuntos
Carcinoma Hepatocelular/virologia , Hepatite B/metabolismo , Fator 4 Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/metabolismo , Neoplasias Hepáticas/virologia , Transativadores/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Hepatite B/genética , Hepatite B/virologia , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Camundongos , Camundongos Nus , Transplante de Neoplasias
12.
J Hepatol ; 70(6): 1093-1102, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30794889

RESUMO

BACKGROUND & AIMS: Tenofovir disoproxil fumarate (TDF) is one the most potent nucleot(s)ide analogues for treating chronic hepatitis B virus (HBV) infection. Phenotypic resistance caused by genotypic resistance to TDF has not been reported. This study aimed to characterize HBV mutations that confer tenofovir resistance. METHODS: Two patients with viral breakthrough during treatment with TDF-containing regimens were prospectively enrolled. The gene encoding HBV reverse transcriptase was sequenced. Eleven HBV clones harboring a series of mutations in the reverse transcriptase gene were constructed by site-directed mutagenesis. Drug susceptibility of each clone was determined by Southern blot analysis and real-time PCR. The relative frequency of mutants was evaluated by ultra-deep sequencing and clonal analysis. RESULTS: Five mutations (rtS106C [C], rtH126Y [Y], rtD134E [E], rtM204I/V, and rtL269I [I]) were commonly found in viral isolates from 2 patients. The novel mutations C, Y, and E were associated with drug resistance. In assays for drug susceptibility, the IC50 value for wild-type HBV was 3.8 ±â€¯0.6 µM, whereas the IC50 values for CYE and CYEI mutants were 14.1 ±â€¯1.8 and 58.1 ±â€¯0.9 µM, respectively. The IC90 value for wild-type HBV was 30 ±â€¯0.5 µM, whereas the IC90 values for CYE and CYEI mutants were 185 ±â€¯0.5 and 790 ±â€¯0.2 µM, respectively. Both tenofovir-resistant mutants and wild-type HBV had similar susceptibility to the capsid assembly modulator NVR 3-778 (IC50 <0.4 µM vs. IC50 = 0.4 µM, respectively). CONCLUSIONS: Our study reveals that the quadruple (CYEI) mutation increases the amount of tenofovir required to inhibit HBV by 15.3-fold in IC50 and 26.3-fold in IC90. These results demonstrate that tenofovir-resistant HBV mutants can emerge, although the genetic barrier is high. LAY SUMMARY: Tenofovir is the most potent nucleotide analogue for the treatment of chronic hepatitis B virus infection and there has been no hepatitis B virus mutation that confers >10-fold resistance to tenofovir up to 8 years. Herein, we identified, for the first time, a quadruple mutation that conferred 15.3-fold (IC50) and 26.3-fold (IC90) resistance to tenofovir in 2 patients who experienced viral breakthrough during tenofovir treatment.


Assuntos
Antivirais/uso terapêutico , Vírus da Hepatite B/genética , Hepatite B Crônica/tratamento farmacológico , Mutação , DNA Polimerase Dirigida por RNA/genética , Inibidores da Transcriptase Reversa/uso terapêutico , Tenofovir/uso terapêutico , Idoso , Linhagem Celular Tumoral , Farmacorresistência Viral/genética , Humanos , Masculino
13.
J Virol ; 92(16)2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29875248

RESUMO

Hepatitis B virus (HBV) infection is a leading cause of liver diseases; however, the host factors which facilitate the replication and persistence of HBV are largely unidentified. Cellular FLICE inhibitory protein (c-FLIP) is a typical antiapoptotic protein. In many cases of liver diseases, the expression level of c-FLIP is altered, which affects the fate of hepatocytes. We previously found that c-FLIP and its cleaved form interact with HBV X protein (HBx), which is essential for HBV replication, and regulate diverse cellular signals. In this study, we investigated the role of endogenous c-FLIP in HBV replication and its underlying mechanisms. The knockdown of endogenous c-FLIP revealed that this protein regulates HBV replication through two different mechanisms. (i) c-FLIP interacts with HBx and protects it from ubiquitin-dependent degradation. The N-terminal DED1 domain of c-FLIP is required for HBx stabilization. (ii) c-FLIP regulates the expression or stability of hepatocyte nuclear factors (HNFs), which have critical roles in HBV transcription and maintenance of hepatocytes. c-FLIP regulates the stability of HNFs through physical interactions. We verified our findings in three HBV infection systems: HepG2-NTCP cells, differentiated HepaRG cells, and primary human hepatocytes. In conclusion, our results identify c-FLIP as an essential factor in HBV replication. c-FLIP regulates viral replication through its multiple effects on viral and host proteins that have critical roles in HBV replication.IMPORTANCE Although the chronic hepatitis B virus (HBV) infection still poses a major health concern, the host factors which are required for the replication of HBV are largely uncharacterized. Our studies identify cellular FLICE inhibitory protein (c-FLIP) as an essential factor in HBV replication. We found the dual roles of c-FLIP in regulation of HBV replication: c-FLIP interacts with HBx and enhances its stability and regulates the expression or stability of hepatocyte nuclear factors which are essential for transcription of HBV genome. Our findings may provide a new target for intervention in persistent HBV infection.


Assuntos
Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Vírus da Hepatite B/fisiologia , Interações Hospedeiro-Patógeno , Transativadores/metabolismo , Replicação Viral , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/genética , Técnicas de Silenciamento de Genes , Hepatócitos/virologia , Humanos , Proteínas Virais Reguladoras e Acessórias
14.
Plant Cell Environ ; 42(11): 2962-2978, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31250458

RESUMO

Shigella, which infects primates, can be transmitted via fresh vegetables; however, its molecular interactions with plants have not been elucidated. Here, we show that four Shigella strains, Shigella boydii, Shigella sonnei, Shigella flexneri 2a, and S. flexneri 5a, proliferate at different levels in Arabidopsis thaliana. Microscopic studies revealed that these bacteria were present inside leaves and damaged plant cells. Green fluorescent protein (GFP)-tagged S. boydii and S. flexneri 5a colonized leaves only, whereas S. flexneri 2a colonized both leaves and roots. Using Shigella mutants lacking type III secretion systems (T3SSs), we found that T3SSs that regulate the pathogenesis of shigellosis in humans also play a central role in bacterial proliferation in Arabidopsis. Strikingly, the immunosuppressive activity of two T3S effectors, OspF and OspG, was required for proliferation of Shigella in Arabidopsis. Of note, delivery of OspF or OspG effectors inside plant cells upon Shigella inoculation was confirmed using a split GFP system. These findings demonstrate that the human pathogen Shigella can proliferate in plants by adapting immunosuppressive machinery used in the original host human.


Assuntos
Arabidopsis/microbiologia , Proteínas da Membrana Bacteriana Externa/metabolismo , Shigella/crescimento & desenvolvimento , Shigella/patogenicidade , Sistemas de Secreção Tipo III/metabolismo , Fatores de Virulência/metabolismo , Arabidopsis/imunologia , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/imunologia , Células Vegetais/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Plantas Geneticamente Modificadas , Shigella/genética , Transdução de Sinais/imunologia , Sistemas de Secreção Tipo III/genética
15.
Gut ; 67(1): 166-178, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28341749

RESUMO

OBJECTIVE: Interferons (IFNs) mediate direct antiviral activity. They play a crucial role in the early host immune response against viral infections. However, IFN therapy for HBV infection is less effective than for other viral infections. DESIGN: We explored the cellular targets of HBV in response to IFNs using proteome-wide screening. RESULTS: Using LC-MS/MS, we identified proteins downregulated and upregulated by IFN treatment in HBV X protein (HBx)-stable and control cells. We found several IFN-stimulated genes downregulated by HBx, including TRIM22, which is known as an antiretroviral protein. We demonstrated that HBx suppresses the transcription of TRIM22 through a single CpG methylation in its 5'-UTR, which further reduces the IFN regulatory factor-1 binding affinity, thereby suppressing the IFN-stimulated induction of TRIM22. CONCLUSIONS: We verified our findings using a mouse model, primary human hepatocytes and human liver tissues. Our data elucidate a mechanism by which HBV evades the host innate immune system.


Assuntos
Regiões 5' não Traduzidas/genética , Ilhas de CpG/genética , Vírus da Hepatite B/imunologia , Interferons/imunologia , Antígenos de Histocompatibilidade Menor/genética , Proteínas Repressoras/genética , Proteínas com Motivo Tripartido/genética , Animais , Regulação para Baixo/genética , Regulação para Baixo/imunologia , Epigênese Genética , Regulação da Expressão Gênica/imunologia , Hepatócitos/metabolismo , Humanos , Evasão da Resposta Imune , Fígado/metabolismo , Metilação , Camundongos , Antígenos de Histocompatibilidade Menor/biossíntese , Proteoma , Proteínas Repressoras/biossíntese , Proteínas com Motivo Tripartido/biossíntese
16.
Mol Plant Microbe Interact ; 31(9): 906-913, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29663867

RESUMO

The pepper Pvr4 protein encoding coiled-coil (CC) nucleotide-binding (NB) leucine-rich repeat (LRR) (NLR) confer hypersensitive response (HR) to potyviruses, including Pepper mottle virus (PepMoV), by recognizing the viral avirulence protein NIb. To figure out the Pvr4-mediated HR mechanism, we analyzed signaling component genes and structure-function relationships of Pvr4, using chimeras and deletion mutants in Nicotiana benthamiana. Molecular chaperone components including HSP90, SGT1, and RAR1 were required, while plant hormones and mitogen-activated protein kinase signaling components had little effect on Pvr4-NIb-mediated HR cell death. Domain swap analyses indicated that the LRR domain of Pvr4 determines recognition of PepMoV-NIb. Our deletion analysis further revealed that the CC domain or CC-NBARC domain alone can trigger autoactive cell death in N. benthamiana. However, the fragments having only an LRR domain could suppress CC-NBARC domain-induced cell death in trans. Further, C-terminal truncation analysis of Pvr4 revealed that a minimum three of five LRR exons showing high similarity was essential for Pvr4 function. The LRR domain may maintain Pvr4 in an inactive state in the absence of NIb. These results provide further insight into the structure and function of NLR protein signaling in plants.


Assuntos
Capsicum/genética , Resistência à Doença/genética , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Potyvirus/fisiologia , Transdução de Sinais , Morte Celular , Proteínas de Repetições Ricas em Leucina , Doenças das Plantas/virologia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Folhas de Planta/virologia , Proteínas de Plantas/genética , Domínios Proteicos , Proteínas/genética , Proteínas/metabolismo , Nicotiana/genética , Nicotiana/fisiologia , Nicotiana/virologia
17.
New Phytol ; 217(3): 1012-1028, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29250789

RESUMO

Contents Summary 1012 I. Introduction 1012 II. The endomembrane system in plant-microbe interactions 1013 III. The cytoskeleton in plant-microbe interactions 1017 IV. Organelles in plant-microbe interactions 1019 V. Inter-organellar communication in plant-microbe interactions 1022 VI. Conclusions and prospects 1023 Acknowledgements 1024 References 1024 SUMMARY: Plants have evolved a multilayered immune system with well-orchestrated defense strategies against pathogen attack. Multiple immune signaling pathways, coordinated by several subcellular compartments and interactions between these compartments, play important roles in a successful immune response. Pathogens use various strategies to either directly attack the plant's immune system or to indirectly manipulate the physiological status of the plant to inhibit an immune response. Microscopy-based approaches have allowed the direct visualization of membrane trafficking events, cytoskeleton reorganization, subcellular dynamics and inter-organellar communication during the immune response. Here, we discuss the contributions of organelles and the cytoskeleton to the plant's defense response against microbial pathogens, as well as the mechanisms used by pathogens to target these compartments to overcome the plant's defense barrier.


Assuntos
Citoesqueleto/metabolismo , Interações Hospedeiro-Patógeno , Organelas/metabolismo , Parede Celular/metabolismo , Modelos Biológicos , Imunidade Vegetal
18.
BMC Complement Altern Med ; 18(1): 21, 2018 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-29357857

RESUMO

BACKGROUND: Gyejibokryeong-hwan (Guizhi Fuling Wan in China), a mixture of five herbal plants, is a well-known treatment for renal diseases including those associated with climacteric syndrome. However, the genotoxicity of Gyejibokryeong-hwan has not yet been well established. METHODS: The present study investigated that the genotoxicity of an aqueous extract of Gyejibokryeong-hwan (GJBRHE): an in vitro chromosomal aberration test using Chinese hamster lung cells, an in vitro bacterial reverse mutation assay (Ames test) with Salmonella typhimurium and Escherichia coli strains, and an in vivo micronucleus test using ICR mouse bone marrow. RESULTS: GJBRHE with or without the S9 mix showed no genotoxicity in the Ames test up to 5000 µg/plate or in the in vivo MN test up to 2000 mg/kg body weight. In contrast, the chromosomal aberration test showed that GJBRHE induced an increase in the number of chromosomal aberrations compared with the control after treatment for 6 h with 4200 µg/mL GJBRHE in the presence of the S9 mix and for 22 h with 800 µg/mL GJBRHE in the absence of the S9 mix. CONCLUSIONS: GJBRHE did not cause detectable genotoxic effects in the bacterial mutation test or the in vivo MN test, however genotoxic effect was detected in the in vitro chromosomal aberration assay. Our results suggest that GJBRHE may be associated with a low risk of carcinogenesis. Thus, further detailed experiments would be needed to clarify the compound responsible for inducing this genotoxicity of GJBRHE and to determine its mechanism.


Assuntos
Aberrações Cromossômicas/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Medicamentos de Ervas Chinesas/toxicidade , Mutagênicos/toxicidade , Animais , Peso Corporal/efeitos dos fármacos , Medula Óssea/efeitos dos fármacos , Linhagem Celular , Cricetinae , Escherichia coli/efeitos dos fármacos , Camundongos , Testes para Micronúcleos , Testes de Mutagenicidade , Salmonella typhimurium/efeitos dos fármacos
20.
Proc Natl Acad Sci U S A ; 111(2): 863-8, 2014 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-24379391

RESUMO

Autophagy is a highly conserved biological process during which double membrane bound autophagosomes carry intracellular cargo material to the vacuole or lysosome for degradation and/or recycling. Autophagosome biogenesis requires Autophagy 4 (Atg4) cysteine protease-mediated processing of ubiquitin-like Atg8 proteins. Unlike single Atg4 and Atg8 genes in yeast, the Arabidopsis genome contains two Atg4 (AtAtg4a and AtAtg4b) and nine Atg8 (AtAtg8a-AtAtg8i) genes. However, we know very little about specificity of different AtAtg4s for processing of different AtAtg8s. Here, we describe a unique bioluminescence resonance energy transfer-based AtAtg8 synthetic substrate to assess AtAtg4 activity in vitro and in vivo. In addition, we developed a unique native gel assay of superhRLUC catalytic activity assay to monitor cleavage of AtAtg8s in vitro. Our results indicate that AtAtg4a is the predominant protease and that it processes AtAtg8a, AtAtg8c, AtAtg8d, and AtAtg8i better than AtAtg4b in vitro. In addition, kinetic analyses indicate that although both AtAtg4s have similar substrate affinity, AtAtg4a is more active than AtAtg4b in vitro. Activity of AtAtg4s is reversibly inhibited in vitro by reactive oxygen species such as H2O2. Our in vivo bioluminescence resonance energy transfer analyses in Arabidopsis transgenic plants indicate that the AtAtg8 synthetic substrate is efficiently processed and this is AtAtg4 dependent. These results indicate that the synthetic AtAtg8 substrate is used efficiently in the biogenesis of autophagosomes in vivo. Transgenic Arabidopsis plants expressing the AtAtg8 synthetic substrate will be a valuable tool to dissect autophagy processes and the role of autophagy during different biological processes in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Autofagia/fisiologia , Cisteína Proteases/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Ubiquitinas/metabolismo , Proteínas Relacionadas à Autofagia , Immunoblotting , Medições Luminescentes , Microscopia Confocal , Fagossomos/metabolismo , Plantas Geneticamente Modificadas , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA