Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 270
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 187(8): 1955-1970.e23, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38503282

RESUMO

Characterizing somatic mutations in the brain is important for disentangling the complex mechanisms of aging, yet little is known about mutational patterns in different brain cell types. Here, we performed whole-genome sequencing (WGS) of 86 single oligodendrocytes, 20 mixed glia, and 56 single neurons from neurotypical individuals spanning 0.4-104 years of age and identified >92,000 somatic single-nucleotide variants (sSNVs) and small insertions/deletions (indels). Although both cell types accumulate somatic mutations linearly with age, oligodendrocytes accumulated sSNVs 81% faster than neurons and indels 28% slower than neurons. Correlation of mutations with single-nucleus RNA profiles and chromatin accessibility from the same brains revealed that oligodendrocyte mutations are enriched in inactive genomic regions and are distributed across the genome similarly to mutations in brain cancers. In contrast, neuronal mutations are enriched in open, transcriptionally active chromatin. These stark differences suggest an assortment of active mutagenic processes in oligodendrocytes and neurons.


Assuntos
Envelhecimento , Encéfalo , Neurônios , Oligodendroglia , Humanos , Envelhecimento/genética , Envelhecimento/patologia , Cromatina/genética , Cromatina/metabolismo , Mutação , Neurônios/metabolismo , Neurônios/patologia , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Análise da Expressão Gênica de Célula Única , Sequenciamento Completo do Genoma , Encéfalo/metabolismo , Encéfalo/patologia , Polimorfismo de Nucleotídeo Único , Mutação INDEL , Bancos de Espécimes Biológicos , Células Precursoras de Oligodendrócitos/metabolismo , Células Precursoras de Oligodendrócitos/patologia
2.
Cell ; 177(7): 1842-1857.e21, 2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-31155235

RESUMO

Mutational processes giving rise to lung adenocarcinomas (LADCs) in non-smokers remain elusive. We analyzed 138 LADC whole genomes, including 83 cases with minimal contribution of smoking-associated mutational signature. Genomic rearrangements were not correlated with smoking-associated mutations and frequently served as driver events of smoking-signature-low LADCs. Complex genomic rearrangements, including chromothripsis and chromoplexy, generated 74% of known fusion oncogenes, including EML4-ALK, CD74-ROS1, and KIF5B-RET. Unlike other collateral rearrangements, these fusion-oncogene-associated rearrangements were frequently copy-number-balanced, representing a genomic signature of early oncogenesis. Analysis of mutation timing revealed that fusions and point mutations of canonical oncogenes were often acquired in the early decades of life. During a long latency, cancer-related genes were disrupted or amplified by complex rearrangements. The genomic landscape was different between subgroups-EGFR-mutant LADCs had frequent whole-genome duplications with p53 mutations, whereas fusion-oncogene-driven LADCs had frequent SETD2 mutations. Our study highlights LADC oncogenesis driven by endogenous mutational processes.


Assuntos
Adenocarcinoma de Pulmão , Rearranjo Gênico , Neoplasias Pulmonares , Mutação , Proteínas de Fusão Oncogênica , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Feminino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo
3.
Cell ; 173(2): 371-385.e18, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29625053

RESUMO

Identifying molecular cancer drivers is critical for precision oncology. Multiple advanced algorithms to identify drivers now exist, but systematic attempts to combine and optimize them on large datasets are few. We report a PanCancer and PanSoftware analysis spanning 9,423 tumor exomes (comprising all 33 of The Cancer Genome Atlas projects) and using 26 computational tools to catalog driver genes and mutations. We identify 299 driver genes with implications regarding their anatomical sites and cancer/cell types. Sequence- and structure-based analyses identified >3,400 putative missense driver mutations supported by multiple lines of evidence. Experimental validation confirmed 60%-85% of predicted mutations as likely drivers. We found that >300 MSI tumors are associated with high PD-1/PD-L1, and 57% of tumors analyzed harbor putative clinically actionable events. Our study represents the most comprehensive discovery of cancer genes and mutations to date and will serve as a blueprint for future biological and clinical endeavors.


Assuntos
Neoplasias/patologia , Algoritmos , Antígeno B7-H1/genética , Biologia Computacional , Bases de Dados Genéticas , Entropia , Humanos , Instabilidade de Microssatélites , Mutação , Neoplasias/genética , Neoplasias/imunologia , Análise de Componente Principal , Receptor de Morte Celular Programada 1/genética
4.
Mol Cell ; 83(15): 2624-2640, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37419111

RESUMO

The four-dimensional nucleome (4DN) consortium studies the architecture of the genome and the nucleus in space and time. We summarize progress by the consortium and highlight the development of technologies for (1) mapping genome folding and identifying roles of nuclear components and bodies, proteins, and RNA, (2) characterizing nuclear organization with time or single-cell resolution, and (3) imaging of nuclear organization. With these tools, the consortium has provided over 2,000 public datasets. Integrative computational models based on these data are starting to reveal connections between genome structure and function. We then present a forward-looking perspective and outline current aims to (1) delineate dynamics of nuclear architecture at different timescales, from minutes to weeks as cells differentiate, in populations and in single cells, (2) characterize cis-determinants and trans-modulators of genome organization, (3) test functional consequences of changes in cis- and trans-regulators, and (4) develop predictive models of genome structure and function.


Assuntos
Núcleo Celular , Genoma , Genoma/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromatina/metabolismo
5.
Nature ; 618(7967): 1024-1032, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37198482

RESUMO

Focal copy-number amplification is an oncogenic event. Although recent studies have revealed the complex structure1-3 and the evolutionary trajectories4 of oncogene amplicons, their origin remains poorly understood. Here we show that focal amplifications in breast cancer frequently derive from a mechanism-which we term translocation-bridge amplification-involving inter-chromosomal translocations that lead to dicentric chromosome bridge formation and breakage. In 780 breast cancer genomes, we observe that focal amplifications are frequently connected to each other by inter-chromosomal translocations at their boundaries. Subsequent analysis indicates the following model: the oncogene neighbourhood is translocated in G1 creating a dicentric chromosome, the dicentric chromosome is replicated, and as dicentric sister chromosomes segregate during mitosis, a chromosome bridge is formed and then broken, with fragments often being circularized in extrachromosomal DNAs. This model explains the amplifications of key oncogenes, including ERBB2 and CCND1. Recurrent amplification boundaries and rearrangement hotspots correlate with oestrogen receptor binding in breast cancer cells. Experimentally, oestrogen treatment induces DNA double-strand breaks in the oestrogen receptor target regions that are repaired by translocations, suggesting a role of oestrogen in generating the initial translocations. A pan-cancer analysis reveals tissue-specific biases in mechanisms initiating focal amplifications, with the breakage-fusion-bridge cycle prevalent in some and the translocation-bridge amplification in others, probably owing to the different timing of DNA break repair. Our results identify a common mode of oncogene amplification and propose oestrogen as its mechanistic origin in breast cancer.


Assuntos
Neoplasias da Mama , Receptor alfa de Estrogênio , Amplificação de Genes , Oncogenes , Translocação Genética , Feminino , Humanos , Neoplasias da Mama/genética , Receptor alfa de Estrogênio/metabolismo , Estrogênios/metabolismo , Oncogenes/genética , Translocação Genética/genética , Genoma Humano/genética , Quebras de DNA de Cadeia Dupla , Especificidade de Órgãos
6.
Nature ; 619(7971): 828-836, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37438524

RESUMO

Splice-switching antisense oligonucleotides (ASOs) could be used to treat a subset of individuals with genetic diseases1, but the systematic identification of such individuals remains a challenge. Here we performed whole-genome sequencing analyses to characterize genetic variation in 235 individuals (from 209 families) with ataxia-telangiectasia, a severely debilitating and life-threatening recessive genetic disorder2,3, yielding a complete molecular diagnosis in almost all individuals. We developed a predictive taxonomy to assess the amenability of each individual to splice-switching ASO intervention; 9% and 6% of the individuals had variants that were 'probably' or 'possibly' amenable to ASO splice modulation, respectively. Most amenable variants were in deep intronic regions that are inaccessible to exon-targeted sequencing. We developed ASOs that successfully rescued mis-splicing and ATM cellular signalling in patient fibroblasts for two recurrent variants. In a pilot clinical study, one of these ASOs was used to treat a child who had been diagnosed with ataxia-telangiectasia soon after birth, and showed good tolerability without serious adverse events for three years. Our study provides a framework for the prospective identification of individuals with genetic diseases who might benefit from a therapeutic approach involving splice-switching ASOs.


Assuntos
Ataxia Telangiectasia , Splicing de RNA , Criança , Humanos , Ataxia Telangiectasia/tratamento farmacológico , Ataxia Telangiectasia/genética , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/uso terapêutico , Estudos Prospectivos , Splicing de RNA/efeitos dos fármacos , Splicing de RNA/genética , Sequenciamento Completo do Genoma , Íntrons , Éxons , Medicina de Precisão , Projetos Piloto
7.
Genes Dev ; 35(9-10): 698-712, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33888559

RESUMO

Histone chaperones are critical for controlling chromatin integrity during transcription, DNA replication, and DNA repair. Three conserved and essential chaperones, Spt6, Spn1/Iws1, and FACT, associate with elongating RNA polymerase II and interact with each other physically and/or functionally; however, there is little understanding of their individual functions or their relationships with each other. In this study, we selected for suppressors of a temperature-sensitive spt6 mutation that disrupts the Spt6-Spn1 physical interaction and that also causes both transcription and chromatin defects. This selection identified novel mutations in FACT. Surprisingly, suppression by FACT did not restore the Spt6-Spn1 interaction, based on coimmunoprecipitation, ChIP, and mass spectrometry experiments. Furthermore, suppression by FACT bypassed the complete loss of Spn1. Interestingly, the FACT suppressor mutations cluster along the FACT-nucleosome interface, suggesting that they alter FACT-nucleosome interactions. In agreement with this observation, we showed that the spt6 mutation that disrupts the Spt6-Spn1 interaction caused an elevated level of FACT association with chromatin, while the FACT suppressors reduced the level of FACT-chromatin association, thereby restoring a normal Spt6-FACT balance on chromatin. Taken together, these studies reveal previously unknown regulation between histone chaperones that is critical for their essential in vivo functions.


Assuntos
Cromatina/metabolismo , Regulação da Expressão Gênica/genética , Chaperonas de Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transcrição Gênica/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Grupo de Alta Mobilidade/metabolismo , Chaperonas de Histonas/genética , Mutação , Nucleossomos/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo
8.
Nat Rev Genet ; 23(5): 298-314, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34880424

RESUMO

Distilling biologically meaningful information from cancer genome sequencing data requires comprehensive identification of somatic alterations using rigorous computational methods. As the amount and complexity of sequencing data have increased, so has the number of tools for analysing them. Here, we describe the main steps involved in the bioinformatic analysis of cancer genomes, review key algorithmic developments and highlight popular tools and emerging technologies. These tools include those that identify point mutations, copy number alterations, structural variations and mutational signatures in cancer genomes. We also discuss issues in experimental design, the strengths and limitations of sequencing modalities and methodological challenges for the future.


Assuntos
Neoplasias , Mapeamento Cromossômico , Biologia Computacional , Variações do Número de Cópias de DNA , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação , Neoplasias/genética
9.
Cell ; 155(4): 858-68, 2013 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-24209623

RESUMO

Microsatellites-simple tandem repeats present at millions of sites in the human genome-can shorten or lengthen due to a defect in DNA mismatch repair. We present here a comprehensive genome-wide analysis of the prevalence, mutational spectrum, and functional consequences of microsatellite instability (MSI) in cancer genomes. We analyzed MSI in 277 colorectal and endometrial cancer genomes (including 57 microsatellite-unstable ones) using exome and whole-genome sequencing data. Recurrent MSI events in coding sequences showed tumor type specificity, elevated frameshift-to-inframe ratios, and lower transcript levels than wild-type alleles. Moreover, genome-wide analysis revealed differences in the distribution of MSI versus point mutations, including overrepresentation of MSI in euchromatic and intronic regions compared to heterochromatic and intergenic regions, respectively, and depletion of MSI at nucleosome-occupied sequences. Our results provide a panoramic view of MSI in cancer genomes, highlighting their tumor type specificity, impact on gene expression, and the role of chromatin organization.


Assuntos
Neoplasias Colorretais/genética , Neoplasias do Endométrio/genética , Instabilidade de Microssatélites , Epigênese Genética , Feminino , Mutação da Fase de Leitura , Estudo de Associação Genômica Ampla , Humanos , Masculino
10.
Cell ; 155(4): 948-62, 2013 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-24183448

RESUMO

Aneuploidy has been recognized as a hallmark of cancer for more than 100 years, yet no general theory to explain the recurring patterns of aneuploidy in cancer has emerged. Here, we develop Tumor Suppressor and Oncogene (TUSON) Explorer, a computational method that analyzes the patterns of mutational signatures in tumors and predicts the likelihood that any individual gene functions as a tumor suppressor (TSG) or oncogene (OG). By analyzing >8,200 tumor-normal pairs, we provide statistical evidence suggesting that many more genes possess cancer driver properties than anticipated, forming a continuum of oncogenic potential. Integrating our driver predictions with information on somatic copy number alterations, we find that the distribution and potency of TSGs (STOP genes), OGs, and essential genes (GO genes) on chromosomes can predict the complex patterns of aneuploidy and copy number variation characteristic of cancer genomes. We propose that the cancer genome is shaped through a process of cumulative haploinsufficiency and triplosensitivity.


Assuntos
Algoritmos , Aneuploidia , Genes Supressores de Tumor , Neoplasias/genética , Oncogenes , Dosagem de Genes , Humanos
11.
Cell ; 153(4): 919-29, 2013 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-23663786

RESUMO

Identification of somatic rearrangements in cancer genomes has accelerated through analysis of high-throughput sequencing data. However, characterization of complex structural alterations and their underlying mechanisms remains inadequate. Here, applying an algorithm to predict structural variations from short reads, we report a comprehensive catalog of somatic structural variations and the mechanisms generating them, using high-coverage whole-genome sequencing data from 140 patients across ten tumor types. We characterize the relative contributions of different types of rearrangements and their mutational mechanisms, find that ~20% of the somatic deletions are complex deletions formed by replication errors, and describe the differences between the mutational mechanisms in somatic and germline alterations. Importantly, we provide detailed reconstructions of the events responsible for loss of CDKN2A/B and gain of EGFR in glioblastoma, revealing that these alterations can result from multiple mechanisms even in a single genome and that both DNA double-strand breaks and replication errors drive somatic rearrangements.


Assuntos
Algoritmos , Genoma Humano , Mutação , Neoplasias/genética , Aberrações Cromossômicas , Estudo de Associação Genômica Ampla , Glioblastoma/genética , Humanos , Neoplasias/patologia
13.
Cell ; 151(3): 483-96, 2012 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-23101622

RESUMO

A major unanswered question in neuroscience is whether there exists genomic variability between individual neurons of the brain, contributing to functional diversity or to an unexplained burden of neurological disease. To address this question, we developed a method to amplify genomes of single neurons from human brains. Because recent reports suggest frequent LINE-1 (L1) retrotransposition in human brains, we performed genome-wide L1 insertion profiling of 300 single neurons from cerebral cortex and caudate nucleus of three normal individuals, recovering >80% of germline insertions from single neurons. While we find somatic L1 insertions, we estimate <0.6 unique somatic insertions per neuron, and most neurons lack detectable somatic insertions, suggesting that L1 is not a major generator of neuronal diversity in cortex and caudate. We then genotyped single cortical cells to characterize the mosaicism of a somatic AKT3 mutation identified in a child with hemimegalencephaly. Single-neuron sequencing allows systematic assessment of genomic diversity in the human brain.


Assuntos
Núcleo Caudado/citologia , Córtex Cerebral/citologia , Elementos Nucleotídeos Longos e Dispersos , Mutação , Neurônios/metabolismo , Análise de Célula Única , Núcleo Caudado/metabolismo , Córtex Cerebral/metabolismo , Criança , Cromossomos Humanos Par 18 , Estudo de Associação Genômica Ampla , Humanos , Masculino , Malformações do Desenvolvimento Cortical/genética , Malformações do Desenvolvimento Cortical/patologia , Mosaicismo , Proteínas Proto-Oncogênicas c-akt/genética , Trissomia
14.
Proc Natl Acad Sci U S A ; 120(51): e2300681120, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38100419

RESUMO

Idiopathic normal pressure hydrocephalus (iNPH) is an enigmatic neurological disorder that develops after age 60 and is characterized by gait difficulty, dementia, and incontinence. Recently, we reported that heterozygous CWH43 deletions may cause iNPH. Here, we identify mutations affecting nine additional genes (AK9, RXFP2, PRKD1, HAVCR1, OTOG, MYO7A, NOTCH1, SPG11, and MYH13) that are statistically enriched among iNPH patients. The encoded proteins are all highly expressed in choroid plexus and ependymal cells, and most have been associated with cilia. Damaging mutations in AK9, which encodes an adenylate kinase, were detected in 9.6% of iNPH patients. Mice homozygous for an iNPH-associated AK9 mutation displayed normal cilia structure and number, but decreased cilia motility and beat frequency, communicating hydrocephalus, and balance impairment. AK9+/- mice displayed normal brain development and behavior until early adulthood, but subsequently developed communicating hydrocephalus. Together, our findings suggest that heterozygous mutations that impair ventricular epithelial function may contribute to iNPH.


Assuntos
Hidrocefalia de Pressão Normal , Hidrocefalia , Humanos , Camundongos , Animais , Adulto , Pessoa de Meia-Idade , Hidrocefalia de Pressão Normal/genética , Hidrocefalia de Pressão Normal/complicações , Hidrocefalia/genética , Encéfalo , Plexo Corióideo , Mutação , Proteínas
15.
Cell ; 140(1): 99-110, 2010 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-20085705

RESUMO

Polycomb group (PcG) proteins are essential for accurate axial body patterning during embryonic development. PcG-mediated repression is conserved in metazoans and is targeted in Drosophila by Polycomb response elements (PREs). However, targeting sequences in humans have not been described. While analyzing chromatin architecture in the context of human embryonic stem cell (hESC) differentiation, we discovered a 1.8kb region between HOXD11 and HOXD12 (D11.12) that is associated with PcG proteins, becomes nuclease hypersensitive, and then shows alteration in nuclease sensitivity as hESCs differentiate. The D11.12 element repressed luciferase expression from a reporter construct and full repression required a highly conserved region and YY1 binding sites. Furthermore, repression was dependent on the PcG proteins BMI1 and EED and a YY1-interacting partner, RYBP. We conclude that D11.12 is a Polycomb-dependent regulatory region with similarities to Drosophila PREs, indicating conservation in the mechanisms that target PcG function in mammals and flies.


Assuntos
Células-Tronco Embrionárias/metabolismo , Genes Homeobox/genética , Proteínas de Homeodomínio/genética , Elementos Reguladores de Transcrição , Proteínas Repressoras/metabolismo , Diferenciação Celular , Cromatina/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Células-Tronco Mesenquimais/metabolismo , Proteínas Nucleares/metabolismo , Complexo Repressor Polycomb 1 , Proteínas do Grupo Polycomb , Proteínas Proto-Oncogênicas/metabolismo
16.
Mol Cell ; 66(1): 77-88.e5, 2017 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-28366642

RESUMO

Spt5 is an essential and conserved factor that functions in transcription and co-transcriptional processes. However, many aspects of the requirement for Spt5 in transcription are poorly understood. We have analyzed the consequences of Spt5 depletion in Schizosaccharomyces pombe using four genome-wide approaches. Our results demonstrate that Spt5 is crucial for a normal rate of RNA synthesis and distribution of RNAPII over transcription units. In the absence of Spt5, RNAPII localization changes dramatically, with reduced levels and a relative accumulation over the first ∼500 bp, suggesting that Spt5 is required for transcription past a barrier. Spt5 depletion also results in widespread antisense transcription initiating within this barrier region. Deletions of this region alter the distribution of RNAPII on the sense strand, suggesting that the barrier observed after Spt5 depletion is normally a site at which Spt5 stimulates elongation. Our results reveal a global requirement for Spt5 in transcription elongation.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , RNA Antissenso/biossíntese , RNA Fúngico/biossíntese , RNA Mensageiro/biossíntese , Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Elongação da Transcrição Genética , Fatores de Elongação da Transcrição/metabolismo , Proteínas Cromossômicas não Histona/genética , Biologia Computacional , Bases de Dados Genéticas , Regulação Fúngica da Expressão Gênica , Genoma Fúngico , Genótipo , Mutação , Fenótipo , Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo , Splicing de RNA , RNA Antissenso/genética , RNA Fúngico/genética , RNA Mensageiro/genética , Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Fatores de Tempo , Fatores de Elongação da Transcrição/genética
17.
Nucleic Acids Res ; 51(21): 11453-11465, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37823611

RESUMO

SINE-VNTR-Alu (SVA) retrotransposons are evolutionarily young and still-active transposable elements (TEs) in the human genome. Several pathogenic SVA insertions have been identified that directly mutate host genes to cause neurodegenerative and other types of diseases. However, due to their sequence heterogeneity and complex structures as well as limitations in sequencing techniques and analysis, SVA insertions have been less well studied compared to other mobile element insertions. Here, we identified polymorphic SVA insertions from 3646 whole-genome sequencing (WGS) samples of >150 diverse populations and constructed a polymorphic SVA insertion reference catalog. Using 20 long-read samples, we also assembled reference and polymorphic SVA sequences and characterized the internal hexamer/variable-number-tandem-repeat (VNTR) expansions as well as differing SVA activity for SVA subfamilies and human populations. In addition, we developed a module to annotate both reference and polymorphic SVA copies. By characterizing the landscape of both reference and polymorphic SVA retrotransposons, our study enables more accurate genotyping of these elements and facilitate the discovery of pathogenic SVA insertions.


Assuntos
Genoma Humano , Retroelementos , Humanos , Elementos Alu , Genoma Humano/genética , Repetições Minissatélites/genética , Retroelementos/genética , Elementos Nucleotídeos Curtos e Dispersos
18.
Genes Dev ; 31(19): 1988-2002, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29070704

RESUMO

Regulatory decisions in Drosophila require Polycomb group (PcG) proteins to maintain the silent state and Trithorax group (TrxG) proteins to oppose silencing. Since PcG and TrxG are ubiquitous and lack apparent sequence specificity, a long-standing model is that targeting occurs via protein interactions; for instance, between repressors and PcG proteins. Instead, we found that Pc-repressive complex 1 (PRC1) purifies with coactivators Fs(1)h [female sterile (1) homeotic] and Enok/Br140 during embryogenesis. Fs(1)h is a TrxG member and the ortholog of BRD4, a bromodomain protein that binds to acetylated histones and is a key transcriptional coactivator in mammals. Enok and Br140, another bromodomain protein, are orthologous to subunits of a mammalian MOZ/MORF acetyltransferase complex. Here we confirm PRC1-Br140 and PRC1-Fs(1)h interactions and identify their genomic binding sites. PRC1-Br140 bind developmental genes in fly embryos, with analogous co-occupancy of PRC1 and a Br140 ortholog, BRD1, at bivalent loci in human embryonic stem (ES) cells. We propose that identification of PRC1-Br140 "bivalent complexes" in fly embryos supports and extends the bivalency model posited in mammalian cells, in which the coexistence of H3K4me3 and H3K27me3 at developmental promoters represents a poised transcriptional state. We further speculate that local competition between acetylation and deacetylation may play a critical role in the resolution of bivalent protein complexes during development.


Assuntos
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Genes Controladores do Desenvolvimento/genética , Complexo Repressor Polycomb 1/metabolismo , Acetilação , Animais , Sítios de Ligação , Diferenciação Celular , Células Cultivadas , Drosophila melanogaster/citologia , Embrião não Mamífero , Inativação Gênica , Células-Tronco Embrionárias Humanas , Humanos , Complexos Multiproteicos/metabolismo , Ligação Proteica
19.
Development ; 148(9)2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33929509

RESUMO

The vertebrate retina is generated by retinal progenitor cells (RPCs), which produce >100 cell types. Although some RPCs produce many cell types, other RPCs produce restricted types of daughter cells, such as a cone photoreceptor and a horizontal cell (HC). We used genome-wide assays of chromatin structure to compare the profiles of a restricted cone/HC RPC and those of other RPCs in chicks. These data nominated regions of regulatory activity, which were tested in tissue, leading to the identification of many cis-regulatory modules (CRMs) active in cone/HC RPCs and developing cones. Two transcription factors, Otx2 and Oc1, were found to bind to many of these CRMs, including those near genes important for cone development and function, and their binding sites were required for activity. We also found that Otx2 has a predicted autoregulatory CRM. These results suggest that Otx2, Oc1 and possibly other Onecut proteins have a broad role in coordinating cone development and function. The many newly discovered CRMs for cones are potentially useful reagents for gene therapy of cone diseases.


Assuntos
Dissecação , Fator 6 Nuclear de Hepatócito/metabolismo , Fatores de Transcrição Otx/metabolismo , Retina/crescimento & desenvolvimento , Células Fotorreceptoras Retinianas Cones/metabolismo , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação , Galinhas , Cromatina , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Fator 6 Nuclear de Hepatócito/genética , Fatores de Transcrição Otx/genética , Retina/metabolismo , Células-Tronco
20.
Nat Methods ; 18(12): 1489-1495, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34862503

RESUMO

For quality, interpretation, reproducibility and sharing value, microscopy images should be accompanied by detailed descriptions of the conditions that were used to produce them. Micro-Meta App is an intuitive, highly interoperable, open-source software tool that was developed in the context of the 4D Nucleome (4DN) consortium and is designed to facilitate the extraction and collection of relevant microscopy metadata as specified by the recent 4DN-BINA-OME tiered-system of Microscopy Metadata specifications. In addition to substantially lowering the burden of quality assurance, the visual nature of Micro-Meta App makes it particularly suited for training purposes.


Assuntos
Metadados , Microscopia Confocal/instrumentação , Microscopia Confocal/métodos , Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos , Aplicativos Móveis , Linguagens de Programação , Software , Animais , Linhagem Celular , Biologia Computacional/métodos , Humanos , Processamento de Imagem Assistida por Computador , Camundongos , Reconhecimento Automatizado de Padrão , Controle de Qualidade , Reprodutibilidade dos Testes , Interface Usuário-Computador , Fluxo de Trabalho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA