Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Eur Respir J ; 63(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38548292

RESUMO

Recent years have witnessed major advances in lung imaging in patients with COPD. These include significant refinements in images obtained by computed tomography (CT) scans together with the introduction of new techniques and software that aim for obtaining the best image whilst using the lowest possible radiation dose. Magnetic resonance imaging (MRI) has also emerged as a useful radiation-free tool in assessing structural and more importantly functional derangements in patients with well-established COPD and smokers without COPD, even before the existence of overt changes in resting physiological lung function tests. Together, CT and MRI now allow objective quantification and assessment of structural changes within the airways, lung parenchyma and pulmonary vessels. Furthermore, CT and MRI can now provide objective assessments of regional lung ventilation and perfusion, and multinuclear MRI provides further insight into gas exchange; this can help in structured decisions regarding treatment plans. These advances in chest imaging techniques have brought new insights into our understanding of disease pathophysiology and characterising different disease phenotypes. The present review discusses, in detail, the advances in lung imaging in patients with COPD and how structural and functional imaging are linked with common resting physiological tests and important clinical outcomes.


Assuntos
Pulmão , Imageamento por Ressonância Magnética , Doença Pulmonar Obstrutiva Crônica , Testes de Função Respiratória , Tomografia Computadorizada por Raios X , Humanos , Doença Pulmonar Obstrutiva Crônica/diagnóstico por imagem , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Tomografia Computadorizada por Raios X/métodos , Pulmão/diagnóstico por imagem , Pulmão/fisiopatologia
5.
Acad Radiol ; 31(6): 2567-2578, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38161089

RESUMO

RATIONALE AND OBJECTIVES: Ex-smokers without spirometry or CT evidence of chronic obstructive pulmonary disease (COPD) but with mildly abnormal diffusing capacity of the lungs for carbon monoxide (DLCO) are at higher risk of developing COPD. It remains difficult to make clinical management decisions for such ex-smokers without other objective assessments consistent with COPD. Hence, our objective was to develop a machine-learning and CT texture-analysis pipeline to dichotomize ex-smokers with normal and abnormal DLCO (DLCO≥75%pred and DLCO<75%pred). MATERIALS AND METHODS: In this retrospective study, 71 ex-smokers (50-85yrs) without COPD underwent spirometry, plethysmography, thoracic CT, and 3He MRI to generate ventilation defect percent (VDP) and apparent diffusion coefficients (ADC). PyRadiomics was utilized to extract 496 CT texture-features; Boruta and principal component analysis were used for feature selection and various models were investigated for classification. Machine-learning classifiers were evaluated using area under the receiver operator characteristic curve (AUC), sensitivity, specificity, and F1-measure. RESULTS: Of 71 ex-smokers without COPD, 29 with mildly abnormal DLCO had significantly different MRI ADC (p < .001), residual-volume to total-lung-capacity ratio (p = .003), St. George's Respiratory Questionnaire (p = .029), and six-minute-walk distance (6MWD) (p < .001), but similar relative area of the lung < -950 Hounsfield-units (RA950) (p = .9) compared to 42 ex-smokers with normal DLCO. Logistic-regression machine-learning mixed-model trained on selected texture-features achieved the best classification accuracy of 87%. All clinical and imaging measurements were outperformed by high-high-pass filter high-gray-level-run-emphasis texture-feature (AUC=0.81), which correlated with DLCO (ρ = -0.29, p = .02), MRI ADC (ρ = 0.23, p = .048), and 6MWD (ρ = -0.25, p = .02). CONCLUSION: In ex-smokers with no CT evidence of emphysema, machine-learning models exclusively trained on CT texture-features accurately classified ex-smokers with abnormal diffusing capacity, outperforming conventional quantitative CT measurements.


Assuntos
Aprendizado de Máquina , Capacidade de Difusão Pulmonar , Tomografia Computadorizada por Raios X , Humanos , Masculino , Idoso , Pessoa de Meia-Idade , Feminino , Tomografia Computadorizada por Raios X/métodos , Estudos Retrospectivos , Idoso de 80 Anos ou mais , Enfisema Pulmonar/diagnóstico por imagem , Enfisema Pulmonar/fisiopatologia , Doença Pulmonar Obstrutiva Crônica/diagnóstico por imagem , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Sensibilidade e Especificidade , Espirometria , Imageamento por Ressonância Magnética/métodos
6.
J Med Imaging (Bellingham) ; 11(4): 046001, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39035052

RESUMO

Purpose: Our objective was to train machine-learning algorithms on hyperpolarized He 3 magnetic resonance imaging (MRI) datasets to generate models of accelerated lung function decline in participants with and without chronic-obstructive-pulmonary-disease. We hypothesized that hyperpolarized gas MRI ventilation, machine-learning, and multivariate modeling could be combined to predict clinically-relevant changes in forced expiratory volume in 1 s ( FEV 1 ) across 3 years. Approach: Hyperpolarized He 3 MRI was acquired using a coronal Cartesian fast gradient recalled echo sequence with a partial echo and segmented using a k-means clustering algorithm. A maximum entropy mask was used to generate a region-of-interest for texture feature extraction using a custom-developed algorithm and the PyRadiomics platform. The principal component and Boruta analyses were used for feature selection. Ensemble-based and single machine-learning classifiers were evaluated using area-under-the-receiver-operator-curve and sensitivity-specificity analysis. Results: We evaluated 88 ex-smoker participants with 31 ± 7 months follow-up data, 57 of whom (22 females/35 males, 70 ± 9 years) had negligible changes in FEV 1 and 31 participants (7 females/24 males, 68 ± 9 years) with worsening FEV 1 ≥ 60 mL / year . In addition, 3/88 ex-smokers reported a change in smoking status. We generated machine-learning models to predict FEV 1 decline using demographics, spirometry, and texture features, with the later yielding the highest classification accuracy of 81%. The combined model (trained on all available measurements) achieved the overall best classification accuracy of 82%; however, it was not significantly different from the model trained on MRI texture features alone. Conclusion: For the first time, we have employed hyperpolarized He 3 MRI ventilation texture features and machine-learning to identify ex-smokers with accelerated decline in FEV 1 with 82% accuracy.

7.
Front Med (Lausanne) ; 11: 1285361, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38327710

RESUMO

Introduction: The pulmonary effects of e-cigarette use (or vaping) became a healthcare concern in 2019, following the rapid increase of e-cigarette-related or vaping-associated lung injury (EVALI) in young people, which resulted in the critical care admission of thousands of teenagers and young adults. Pulmonary functional imaging is well-positioned to provide information about the acute and chronic effects of vaping. We generated a systematic review to retrieve relevant imaging studies that describe the acute and chronic imaging findings that underly vaping-related lung structure-function abnormalities. Methods: A systematic review was undertaken on June 13th, 2023 using PubMed to search for published manuscripts using the following criteria: [("Vaping" OR "e-cigarette" OR "EVALI") AND ("MRI" OR "CT" OR "Imaging")]. We included only studies involving human participants, vaping/e-cigarette use, and MRI, CT and/or PET. Results: The search identified 445 manuscripts, of which 110 (668 unique participants) specifically mentioned MRI, PET or CT imaging in cases or retrospective case series of patients who vaped. This included 105 manuscripts specific to CT (626 participants), three manuscripts which mainly used MRI (23 participants), and two manuscripts which described PET findings (20 participants). Most studies were conducted in North America (n = 90), with the remaining studies conducted in Europe (n = 15), Asia (n = 4) and South America (n = 1). The vast majority of publications described case studies (n = 93) and a few described larger retrospective or prospective studies (n = 17). In e-cigarette users and patients with EVALI, key CT findings included ground-glass opacities, consolidations and subpleural sparing, MRI revealed abnormal ventilation, perfusion and ventilation/perfusion matching, while PET showed evidence of pulmonary inflammation. Discussion and conclusion: Pulmonary structural and functional imaging abnormalities were common in patients with EVALI and in e-cigarette users with or without respiratory symptoms, which suggests that functional MRI may be helpful in the investigation of the pulmonary health effects associated with e-cigarette use.

8.
Chest ; 165(2): e27-e31, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38336440

RESUMO

Irritant-induced asthma (IIA) may develop after acute inhalational exposure in individuals without preexisting asthma. The effect of bronchial thermoplasty to treat intractable, worsening IIA has not yet been described. We evaluated a previously healthy 52-year-old man after inhalation of an unknown white powder. His pulmonary function and symptoms/quality of life worsened over 4 years, despite maximal guidelines-based asthma therapy. We acquired 129Xe MRI and pulmonary function test measurements on three occasions including before and after bronchial thermoplasty treatment. Seven months after bronchial thermoplasty, improved MRI ventilation and oscillometry small airway resistance were observed. Spirometry and asthma control did not improve until 19 months after bronchial thermoplasty, 5.5 years postexposure. Together, oscillometry measurements of the small airways and 129Xe MRI provided effort-independent, sensitive, and objective measurements of response to therapy. Improved MRI and oscillometry small airway resistance measurements temporally preceded improved airflow obstruction and may be considered for complex asthma cases.


Assuntos
Asma , Termoplastia Brônquica , Masculino , Humanos , Pessoa de Meia-Idade , Termoplastia Brônquica/efeitos adversos , Irritantes , Qualidade de Vida , Oscilometria , Imageamento por Ressonância Magnética
9.
Acad Radiol ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38637239

RESUMO

RATIONALE AND OBJECTIVES: It remains difficult to predict longitudinal outcomes in long-COVID, even with chest CT and functional MRI. 129Xe MRI reflects airway dysfunction, measured using ventilation defect percent (VDP) and in long-COVID patients, MRI VDP was abnormal, suggestive of airways disease. While MRI VDP and quality-of-life improved 15-month post-COVID infection, both remained abnormal. To better understand the relationship of airways disease and quality-of-life improvements in patients with long-COVID, we extracted 129Xe ventilation MRI textures and generated machine-learning models in an effort to predict improved quality-of-life, 15-month post-infection. MATERIALS AND METHODS: Long-COVID patients provided written-informed consent to 3-month and 15-month post-infection visits. Pyradiomics was used to extract 129Xe ventilation MRI texture features, which were ranked using a Random-Forest classifier. Top-ranking features were used in classification models to dichotomize patients based on St. George's Respiratory Questionnaire (SGRQ) score improvement greater than the minimal-clinically-important-difference (MCID). Classification performance was evaluated using the area under the receiver-operator-characteristic-curve (AUC), sensitivity, and specificity. RESULTS: 120 texture features were extracted from 129Xe ventilation MRI in 44 long-COVID participants (54 ± 14 years), including 30 (52 ± 12 years) with ΔSGRQ≥MCID and 14 (58 ± 18 years) with ΔSGRQ

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA