RESUMO
BACKGROUND: Electronic health records (EHRs, such as those created by an anesthesia management system) generate a large amount of data that can notably be reused for clinical audits and scientific research. The sharing of these data and tools is generally affected by the lack of system interoperability. To overcome these issues, Observational Health Data Sciences and Informatics (OHDSI) developed the Observational Medical Outcomes Partnership (OMOP) common data model (CDM) to standardize EHR data and promote large-scale observational and longitudinal research. Anesthesia data have not previously been mapped into the OMOP CDM. OBJECTIVE: The primary objective was to transform anesthesia data into the OMOP CDM. The secondary objective was to provide vocabularies, queries, and dashboards that might promote the exploitation and sharing of anesthesia data through the CDM. METHODS: Using our local anesthesia data warehouse, a group of 5 experts from 5 different medical centers identified local concepts related to anesthesia. The concepts were then matched with standard concepts in the OHDSI vocabularies. We performed structural mapping between the design of our local anesthesia data warehouse and the OMOP CDM tables and fields. To validate the implementation of anesthesia data into the OMOP CDM, we developed a set of queries and dashboards. RESULTS: We identified 522 concepts related to anesthesia care. They were classified as demographics, units, measurements, operating room steps, drugs, periods of interest, and features. After semantic mapping, 353 (67.7%) of these anesthesia concepts were mapped to OHDSI concepts. Further, 169 (32.3%) concepts related to periods and features were added to the OHDSI vocabularies. Then, 8 OMOP CDM tables were implemented with anesthesia data and 2 new tables (EPISODE and FEATURE) were added to store secondarily computed data. We integrated data from 5,72,609 operations and provided the code for a set of 8 queries and 4 dashboards related to anesthesia care. CONCLUSIONS: Generic data concerning demographics, drugs, units, measurements, and operating room steps were already available in OHDSI vocabularies. However, most of the intraoperative concepts (the duration of specific steps, an episode of hypotension, etc) were not present in OHDSI vocabularies. The OMOP mapping provided here enables anesthesia data reuse.
Assuntos
Anestesia , Informática Médica , Ciência de Dados , Bases de Dados Factuais , Registros Eletrônicos de Saúde , Hospitais , HumanosRESUMO
BACKGROUND: In the era of big data, the intensive care unit (ICU) is likely to benefit from real-time computer analysis and modeling based on close patient monitoring and electronic health record data. The Medical Information Mart for Intensive Care (MIMIC) is the first open access database in the ICU domain. Many studies have shown that common data models (CDMs) improve database searching by allowing code, tools, and experience to be shared. The Observational Medical Outcomes Partnership (OMOP) CDM is spreading all over the world. OBJECTIVE: The objective was to transform MIMIC into an OMOP database and to evaluate the benefits of this transformation for analysts. METHODS: We transformed MIMIC (version 1.4.21) into OMOP format (version 5.3.3.1) through semantic and structural mapping. The structural mapping aimed at moving the MIMIC data into the right place in OMOP, with some data transformations. The mapping was divided into 3 phases: conception, implementation, and evaluation. The conceptual mapping aimed at aligning the MIMIC local terminologies to OMOP's standard ones. It consisted of 3 phases: integration, alignment, and evaluation. A documented, tested, versioned, exemplified, and open repository was set up to support the transformation and improvement of the MIMIC community's source code. The resulting data set was evaluated over a 48-hour datathon. RESULTS: With an investment of 2 people for 500 hours, 64% of the data items of the 26 MIMIC tables were standardized into the OMOP CDM and 78% of the source concepts mapped to reference terminologies. The model proved its ability to support community contributions and was well received during the datathon, with 160 participants and 15,000 requests executed with a maximum duration of 1 minute. CONCLUSIONS: The resulting MIMIC-OMOP data set is the first MIMIC-OMOP data set available free of charge with real disidentified data ready for replicable intensive care research. This approach can be generalized to any medical field.
RESUMO
BACKGROUND: Common data models (CDMs) enable data to be standardized, and facilitate data exchange, sharing, and storage, particularly when the data have been collected via distinct, heterogeneous systems. Moreover, CDMs provide tools for data quality assessment, integration into models, visualization, and analysis. The observational medical outcome partnership (OMOP) provides a CDM for organizing and standardizing databases. Common data models not only facilitate data integration but also (and especially for the OMOP model) extends the range of available statistical analyses. OBJECTIVE: This study aimed to evaluate the feasibility of implementing French national electronic health records in the OMOP CDM. METHODS: The OMOP's specifications were used to audit the source data, specify the transformation into the OMOP CDM, implement an extract-transform-load process to feed data from the French health care system into the OMOP CDM, and evaluate the final database. RESULTS: Seventeen vocabularies corresponding to the French context were added to the OMOP CDM's concepts. Three French terminologies were automatically mapped to standardized vocabularies. We loaded nine tables from the OMOP CDM's "standardized clinical data" section, and three tables from the "standardized health system data" section. Outpatient and inpatient data from 38,730 individuals were integrated. The median (interquartile range) number of outpatient and inpatient stays per patient was 160 (19-364). CONCLUSION: Our results demonstrated that data from the French national health care system can be integrated into the OMOP CDM. One of the main challenges was the use of international OMOP concepts to annotate data recorded in a French context. The use of local terminologies was an obstacle to conceptual mapping; with the exception of an adaptation of the International Classification of Diseases 10th Revision, the French health care system does not use international terminologies. It would be interesting to extend our present findings to the 65 million people registered in the French health care system.