Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(3): e2314514121, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38190524

RESUMO

Gram-negative bacterial bloodstream infections (GNB-BSI) are common and frequently lethal. Despite appropriate antibiotic treatment, relapse of GNB-BSI with the same bacterial strain is common and associated with poor clinical outcomes and high healthcare costs. The role of persister cells, which are sub-populations of bacteria that survive for prolonged periods in the presence of bactericidal antibiotics, in relapse of GNB-BSI is unclear. Using a cohort of patients with relapsed GNB-BSI, we aimed to determine how the pathogen evolves within the patient between the initial and subsequent episodes of GNB-BSI and how these changes impact persistence. Using Escherichia coli clinical bloodstream isolate pairs (initial and relapse isolates) from patients with relapsed GNB-BSI, we found that 4/11 (36%) of the relapse isolates displayed a significant increase in persisters cells relative to the initial bloodstream infection isolate. In the relapsed E. coli strain with the greatest increase in persisters (100-fold relative to initial isolate), we determined that the increase was due to a loss-of-function mutation in the ptsI gene encoding Enzyme I of the phosphoenolpyruvate phosphotransferase system. The ptsI mutant was equally virulent in a murine bacteremia infection model but exhibited 10-fold increased survival to antibiotic treatment. This work addresses the controversy regarding the clinical relevance of persister formation by providing compelling data that not only do high-persister mutations arise during bloodstream infection in humans but also that these mutants display increased survival to antibiotic challenge in vivo.


Assuntos
Bacteriemia , Sepse , Humanos , Animais , Camundongos , Escherichia coli/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bacteriemia/tratamento farmacológico , Recidiva
2.
Clin Infect Dis ; 78(6): 1458-1461, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38366610

RESUMO

The association between persistent gram-negative bloodstream infection (GN-BSI), or ongoing positive cultures, and recurrent GN-BSI has not been investigated. Among 992 adults, persistent GN-BSI was associated with increased recurrent GN-BSI with the same bacterial species and strain (6% vs 2%; P = .04). Persistent GN-BSI may be a marker of complicated infection.


Assuntos
Bacteriemia , Bactérias Gram-Negativas , Infecções por Bactérias Gram-Negativas , Recidiva , Humanos , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/epidemiologia , Bacteriemia/microbiologia , Bacteriemia/epidemiologia , Masculino , Pessoa de Meia-Idade , Feminino , Bactérias Gram-Negativas/isolamento & purificação , Bactérias Gram-Negativas/classificação , Idoso , Adulto , Fatores de Risco
3.
Clin Infect Dis ; 76(3): e1285-e1293, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35929656

RESUMO

BACKGROUND: The causes and clinical characteristics of recurrent gram-negative bacterial bloodstream infections (GNB-BSI) are poorly understood. METHODS: We used a cohort of patients with GNB-BSI to identify clinical characteristics, microbiology, and risk factors associated with recurrent GNB-BSI. Bacterial genotyping (pulsed-field gel electrophoresis [PFGE] and whole-genome sequencing [WGS]) was used to determine whether episodes were due to relapse or reinfection. Multivariable logistic regression was used to identify risk factors for recurrence. RESULTS: Of the 1423 patients with GNB-BSI in this study, 60 (4%) had recurrent GNB-BSI. Non-White race (odds ratio [OR], 2.35; 95% confidence interval [CI], 1.38-4.01; P = .002), admission to a surgical service (OR, 2.18; 95% CI, 1.26-3.75; P = .005), and indwelling cardiac device (OR, 2.73; 95% CI, 1.21-5.58; P = .009) were associated with increased risk for recurrent GNB-BSI. Among the 48 patients with recurrent GNB-BSI whose paired bloodstream isolates underwent genotyping, 63% were due to relapse (30 of 48) and 38% were due to reinfection (18 of 48) based on WGS. Compared with WGS, PFGE correctly differentiated relapse and reinfection in 98% (47 of 48) of cases. Median time to relapse and reinfection was similar (113 days; interquartile range [IQR], 35-222 vs 174 days; IQR, 69-599; P = .13). Presence of a cardiac device was associated with relapse (relapse: 7 of 27, 26%; nonrelapse: 65 of 988, 7%; P = .002). CONCLUSIONS: In this study, recurrent GNB-BSI was most commonly due to relapse. PFGE accurately differentiated relapse from reinfection when compared with WGS. Cardiac device was a risk factor for relapse.


Assuntos
Bacteriemia , Infecções por Bactérias Gram-Negativas , Sepse , Humanos , Reinfecção , Bacteriemia/microbiologia , Infecções por Bactérias Gram-Negativas/diagnóstico , Infecções por Bactérias Gram-Negativas/microbiologia , Sepse/complicações , Recidiva , Fatores de Risco , Estudos Retrospectivos
4.
Antimicrob Agents Chemother ; 64(11)2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32816729

RESUMO

Coagulase-negative staphylococci (CoNS) are a common etiology of serious and recurrent infections in immunocompromised patients. Although most isolates appear susceptible to vancomycin, a single strain might have a subpopulation of resistant bacteria. This phenomenon is termed heteroresistance and may adversely affect the response to treatment. A retrospective cohort study was performed of pediatric patients with leukemia treated at St. Jude Children's Research Hospital who developed CoNS central line-associated bloodstream infection (CLABSI). Available isolates were sequenced and tested for vancomycin heteroresistance by population analysis profiling. Risk factors for heteroresistance and the association of heteroresistance with treatment failure (death or relapse of infection) or poor clinical response to vancomycin therapy (treatment failure or persistent bacteremia after vancomycin initiation) were evaluated. For 65 participants with CoNS CLABSI, 62 initial isolates were evaluable, of which 24 (39%) were vancomycin heteroresistant. All heteroresistant isolates were of Staphylococcus epidermidis and comprised multiple sequence types. Participants with heteroresistant bacteria had more exposure to vancomycin prophylaxis (P = 0.026) during the 60 days prior to infection. Of the 40 participants evaluable for clinical outcomes, heteroresistance increased the risk of treatment failure (P = 0.012) and poor clinical response (P = 0.001). This effect persisted after controlling for identified confounders. These data indicate that vancomycin heteroresistance is common in CoNS isolates from CLABSIs in pediatric patients with leukemia and is associated with poor clinical outcomes. Validation of these findings in an independent cohort and evaluation of alternative antibiotic therapy in patients with heteroresistant infections have the potential to improve care for serious CoNS infections.


Assuntos
Bacteriemia , Sepse , Infecções Estafilocócicas , Antibacterianos/uso terapêutico , Bacteriemia/tratamento farmacológico , Criança , Coagulase , Humanos , Testes de Sensibilidade Microbiana , Estudos Retrospectivos , Sepse/tratamento farmacológico , Infecções Estafilocócicas/tratamento farmacológico , Vancomicina/uso terapêutico
5.
Opt Express ; 27(18): 24972-24977, 2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31510377

RESUMO

We demonstrate that the strong 4-level Yb emission in a fiber laser can be almost completely suppressed in an Yb all-solid double-clad photonic bandgap fiber, resulting in highly efficient high-power monolithic Yb fiber lasers operating at the 3-level system. We have achieved single-mode continuous wave laser output power of ~151W at ~978nm with an efficiency of 63% with respect to the launched pump power in a practical monolithic fiber laser configuration for the first time. The demonstrated power in this work are setting new records for diffraction-limited double-clad fiber lasers operating at ~978nm.

6.
Opt Lett ; 44(4): 807-810, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30767992

RESUMO

Efficient cladding-pumped three-level Yb fiber lasers are difficult to achieve due to the competing four-level system and necessary high inversions. We demonstrate an efficiency of ∼62.7% versus a coupled pump, a record for cladding-pumped fiber lasers with a single-pass pump. 84 W at ∼978 nm with ∼1.12M2 was achieved, a record power for flexible fibers. Amplified spontaneous emission was suppressed by >40 dB. The efficiency is quantum-limited ∼94% versus an absorbed pump. This is made possible by the use of a photo-darkening-free Yb phosphosilicate core and recent progress in single-mode large-core all-solid photonic bandgap fiber designs, which provide the necessary large core-to-cladding ratio and suppression of the four-level system.

8.
Opt Express ; 26(3): 3138-3144, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29401845

RESUMO

Lowering the quantum defect by tandem pumping with fiber lasers at 1018nm was critical for achieving the record 10kW single-mode ytterbium fiber laser. Here we report the demonstration of an efficient directly-diode-pumped single-mode ytterbium fiber laser with 240W at 1018nm. The key for the combination of high efficiency, high power and single-mode at 1018nm is an ytterbium-doped 50µm/400µm all-solid photonic bandgap fiber, which has a practical all-solid design and a pump cladding much larger than those used in previous demonstrations of single-mode 1018nm ytterbium fiber lasers, enabling higher pump powers. Efficient high-power single-mode 1018nm fiber laser is critical for further power scaling of fiber lasers and the all-solid photonic bandgap fiber can potentially be a significant enabling technology.

9.
Mol Cell ; 38(2): 305-15, 2010 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-20417607

RESUMO

Compartmentalization is an important process, since it allows the segregation of metabolic activities and, in the era of synthetic biology, represents an important tool by which defined microenvironments can be created for specific metabolic functions. Indeed, some bacteria make specialized proteinaceous metabolic compartments called bacterial microcompartments (BMCs) or metabolosomes. Here we demonstrate that the shell of the metabolosome (representing an empty BMC) can be produced within E. coli cells by the coordinated expression of genes encoding structural proteins. A plethora of diverse structures can be generated by changing the expression profile of these genes, including the formation of large axial filaments that interfere with septation. Fusing GFP to PduC, PduD, or PduV, none of which are shell proteins, allows regiospecific targeting of the reporter group to the empty BMC. Live cell imaging provides unexpected evidence of filament-associated BMC movement within the cell in the presence of PduV.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Organelas/química , Organelas/metabolismo , Bactérias/genética , Bactérias/ultraestrutura , Proteínas de Bactérias/genética , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/ultraestrutura , Genes Bacterianos , Organelas/genética
10.
Proc Natl Acad Sci U S A ; 111(29): 10532-7, 2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-25002480

RESUMO

Extracellular fatty acid incorporation into the phospholipids of Staphylococcus aureus occurs via fatty acid phosphorylation. We show that fatty acid kinase (Fak) is composed of two dissociable protein subunits encoded by separate genes. FakA provides the ATP binding domain and interacts with two distinct FakB proteins to produce acyl-phosphate. The FakBs are fatty acid binding proteins that exchange bound fatty acid/acyl-phosphate with fatty acid/acyl-phosphate presented in detergent micelles or liposomes. The ΔfakA and ΔfakB1 ΔfakB2 strains were unable to incorporate extracellular fatty acids into phospholipid. FakB1 selectively bound saturated fatty acids whereas FakB2 preferred unsaturated fatty acids. Affymetrix array showed a global perturbation in the expression of virulence genes in the ΔfakA strain. The severe deficiency in α-hemolysin protein secretion in ΔfakA and ΔfakB1 ΔfakB2 mutants coupled with quantitative mRNA measurements showed that fatty acid kinase activity was required to support virulence factor transcription. These data reveal the function of two conserved gene families, their essential role in the incorporation of host fatty acids by Gram-positive pathogens, and connects fatty acid kinase to the regulation of virulence factor transcription in S. aureus.


Assuntos
Proteínas de Bactérias/metabolismo , Ácidos Graxos/metabolismo , Interações Hospedeiro-Patógeno , Fosfotransferases (Aceptor do Grupo Carboxila)/metabolismo , Staphylococcus aureus/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/química , Dados de Sequência Molecular , Fosfolipídeos/metabolismo , Fosfotransferases (Aceptor do Grupo Carboxila)/química , Staphylococcus aureus/patogenicidade , Especificidade por Substrato , Transcrição Gênica , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
11.
Mol Microbiol ; 96(1): 28-41, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25534847

RESUMO

PlsX is an acyl-acyl carrier protein (ACP):phosphate transacylase that interconverts the two acyl donors in Gram-positive bacterial phospholipid synthesis. The deletion of plsX in Staphylococcus aureus results in a requirement for both exogenous fatty acids and de novo type II fatty acid biosynthesis. Deletion of plsX (SP0037) in Streptococcus pneumoniae did not result in an auxotrophic phenotype. The ΔplsX S. pneumoniae strain was refractory to myristic acid-dependent growth arrest, and unlike the wild-type strain, was susceptible to fatty acid synthesis inhibitors in the presence of exogenous oleate. The ΔplsX strain contained longer chain saturated fatty acids imparting a distinctly altered phospholipid molecular species profile. An elevated pool of 18- and 20-carbon saturated fatty acids was detected in the ΔplsX strain. A S. pneumoniae thioesterase (TesS, SP1408) hydrolyzed acyl-ACP in vitro, and the ΔtesS ΔplsX double knockout strain was a fatty acid auxotroph. Thus, the TesS thioesterase hydrolyzed the accumulating acyl-ACP in the ΔplsX strain to liberate fatty acids that were activated by fatty acid kinase to bypass a requirement for extracellular fatty acid. This work identifies tesS as the gene responsible for the difference in exogenous fatty acid growth requirement of the ΔplsX strains of S. aureus and S. pneumoniae.


Assuntos
Proteínas de Bactérias/genética , Ácidos Graxos/metabolismo , Deleção de Sequência , Streptococcus pneumoniae/crescimento & desenvolvimento , Streptococcus pneumoniae/genética , Tioléster Hidrolases/metabolismo , Proteína de Transporte de Acila/metabolismo , Sequência de Bases , Ácidos Graxos/biossíntese , Ácidos Graxos/genética , Técnicas de Inativação de Genes , Ácido Mirístico/metabolismo , Fenótipo , Fosfolipídeos/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Streptococcus pneumoniae/metabolismo , Tioléster Hidrolases/genética
12.
Opt Express ; 24(10): 10295-301, 2016 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-27409854

RESUMO

Lower NA in large-mode-area fibers enables better single-mode operation and larger core diameters. Fiber NA has traditionally been limited to 0.06, mostly due to the control tolerance in the fabrication process. It has been recognized recently that transverse mode instability is a major limit to average power scaling in fiber lasers. One effective method to mitigate this limit is to operate nearer to the single-mode regime. Lower fiber NA is critical in this since it allows relatively larger core diameters which is the key to mitigate the limits imposed by nonlinear effects. We have developed a fabrication process of ytterbium-doped silica glass which is capable of highly accurate refractive index control and sufficient uniformity for LMA fibers. This process is also capable of large-volume production. It is based on a significant amount of post-processing once the fiber preforms are made. We have demonstrated 30/400 and 40/400 LMA fibers with a NA of ~0.028 operating very close to the single-mode regime. The second-order mode cuts off at ~1.2µm and ~1.55µm respectively. We have also studied issues related to bend losses due to the low NA and further optimization of LMA fibers.

13.
Mol Microbiol ; 92(2): 234-45, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24673884

RESUMO

Acyl-CoA and acyl-acyl carrier protein (ACP) synthetases activate exogenous fatty acids for incorporation into phospholipids in Gram-negative bacteria. However, Gram-positive bacteria utilize an acyltransferase pathway for the biogenesis of phosphatidic acid that begins with the acylation of sn-glycerol-3-phosphate by PlsY using an acyl-phosphate (acyl-PO4 ) intermediate. PlsX generates acyl-PO4 from the acyl-ACP end-products of fatty acid synthesis. The plsX gene of Staphylococcus aureus was inactivated and the resulting strain was both a fatty acid auxotroph and required de novo fatty acid synthesis for growth. Exogenous fatty acids were only incorporated into the 1-position and endogenous acyl groups were channeled into the 2-position of the phospholipids in strain PDJ39 (ΔplsX). Extracellular fatty acids were not elongated. Removal of the exogenous fatty acid supplement led to the rapid accumulation of intracellular acyl-ACP and the abrupt cessation of fatty acid synthesis. Extracts from the ΔplsX strain exhibited an ATP-dependent fatty acid kinase activity, and the acyl-PO4 was converted to acyl-ACP when purified PlsX is added. These data reveal the existence of a novel fatty acid kinase pathway for the incorporation of exogenous fatty acids into S. aureus phospholipids.


Assuntos
Proteínas de Bactérias/metabolismo , Ácidos Graxos/metabolismo , Redes e Vias Metabólicas , Fosfotransferases/metabolismo , Staphylococcus aureus/enzimologia , Staphylococcus aureus/metabolismo , Proteínas de Bactérias/genética , Técnicas de Inativação de Genes , Fosfotransferases/genética , Staphylococcus aureus/genética , Staphylococcus aureus/crescimento & desenvolvimento
14.
Antimicrob Agents Chemother ; 59(2): 849-58, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25403676

RESUMO

Delineating the mechanisms for genetically acquired antibiotic resistance is a robust approach to target validation and anticipates the evolution of clinical drug resistance. This study defines a spectrum of mutations in fabH that render Staphylococcus aureus resistant to multiple natural products known to inhibit the elongation condensing enzyme (FabF) of bacterial type II fatty acid synthesis. Twenty independently isolated clones resistant to platensimycin, platencin, or thiolactomycin were isolated. All mutants selected against one antibiotic were cross-resistant to the other two antibiotics. Mutations were not detected in fabF, but the resistant strains harbored missense mutations in fabH. The altered amino acids clustered in and around the FabH active-site tunnel. The mutant FabH proteins were catalytically compromised based on the low activities of the purified enzymes, a fatty acid-dependent growth phenotype, and elevated expression of the fabHF operon in the mutant strains. Independent manipulation of fabF and fabH expression levels showed that the FabH/FabF activity ratio was a major determinant of antibiotic sensitivity. Missense mutations that reduce FabH activity are sufficient to confer resistance to multiple antibiotics that bind to the FabF acyl-enzyme intermediate in S. aureus.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Ácido Graxo Sintase Tipo II/genética , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/enzimologia , Proteínas de Bactérias/metabolismo , Mutação , Mutação de Sentido Incorreto/genética , Staphylococcus aureus/genética
15.
Opt Express ; 23(4): 4307-12, 2015 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-25836467

RESUMO

We demonstrate an Yb-doped polarizing all-solid photonic bandgap fiber for single-polarization and single-mode operation with an effective mode area of ~1150µm(2), a record for all-solid photonic bandgap fibers. The differential polarization mode loss is measured to be >5dB/m over the entire transmission band with a 160nm bandwidth and >15dB/m on the short wavelength edge of the band. A 2.6m long fiber was tested in a laser configuration producing a linearly polarized laser output with a PER value of 21dB without any polarizer, the highest for any fiber lasers based on polarizing fibers.

16.
BMC Genomics ; 15: 1118, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25514876

RESUMO

BACKGROUND: Purple carrots accumulate large quantities of anthocyanins in their roots and leaves. These flavonoid pigments possess antioxidant activity and are implicated in providing health benefits. Informative, saturated linkage maps associated with well characterized populations segregating for anthocyanin pigmentation have not been developed. To investigate the genetic architecture conditioning anthocyanin pigmentation we scored root color visually, quantified root anthocyanin pigments by high performance liquid chromatography in segregating F2, F3 and F4 generations of a mapping population, mapped quantitative trait loci (QTL) onto a dense gene-derived single nucleotide polymorphism (SNP)-based linkage map, and performed comparative trait mapping with two unrelated populations. RESULTS: Root pigmentation, scored visually as presence or absence of purple coloration, segregated in a pattern consistent with a two gene model in an F2, and progeny testing of F3-F4 families confirmed the proposed genetic model. Purple petiole pigmentation was conditioned by a single dominant gene that co-segregates with one of the genes conditioning root pigmentation. Root total pigment estimate (RTPE) was scored as the percentage of the root with purple color.All five anthocyanin glycosides previously reported in carrot, as well as RTPE, varied quantitatively in the F2 population. For the purpose of QTL analysis, a high resolution gene-derived SNP-based linkage map of carrot was constructed with 894 markers covering 635.1 cM with a 1.3 cM map resolution. A total of 15 significant QTL for all anthocyanin pigments and for RTPE mapped to six chromosomes. Eight QTL with the largest phenotypic effects mapped to two regions of chromosome 3 with co-localized QTL for several anthocyanin glycosides and for RTPE. A single dominant gene conditioning anthocyanin acylation was identified and mapped.Comparative mapping with two other carrot populations segregating for purple color indicated that carrot anthocyanin pigmentation is controlled by at least three genes, in contrast to monogenic control reported previously. CONCLUSIONS: This study generated the first high resolution gene-derived SNP-based linkage map in the Apiaceae. Two regions of chromosome 3 with co-localized QTL for all anthocyanin pigments and for RTPE, largely condition anthocyanin accumulation in carrot roots and leaves. Loci controlling root and petiole anthocyanin pigmentation differ across diverse carrot genetic backgrounds.


Assuntos
Antocianinas/análise , Cromossomos de Plantas , Daucus carota/genética , Locos de Características Quantitativas , Antocianinas/biossíntese , Antocianinas/genética , Cromatografia Líquida de Alta Pressão , Mapeamento Cromossômico , Hibridização Genômica Comparativa , Daucus carota/química , Daucus carota/metabolismo , Ligação Genética , Pigmentação/genética , Folhas de Planta/química , Folhas de Planta/genética , Folhas de Planta/metabolismo , Raízes de Plantas/química , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único
17.
Opt Express ; 22(11): 13962-8, 2014 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-24921587

RESUMO

Single-mode operation in a large-mode-area fiber laser is highly desired for power scaling. We have, for the first time, demonstrated a 50µm-core-diameter Yb-doped all-solid photonic bandgap fiber laser with a mode area over 4 times that of the previous demonstration. 75W output power has been generated with a diffraction-limited beam and an efficiency of 70% relative to the launched pump power. We have also experimentally confirmed that a robust single-mode regime exists near the high frequency edge of the bandgap. These fibers only guide light within the bandgap over a narrow spectral range, which is essential for lasing far from the gain peak and suppression of stimulated Raman scattering. This work demonstrates the strong potential for mode area scaling of in single-mode all-solid photonic bandgap fibers.

18.
Opt Express ; 22(12): 14657-65, 2014 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-24977561

RESUMO

Quantitative mode characterization of fibers with cores much beyond 50µm is difficult with existing techniques due to the combined effects of smaller intermodal group delays and dispersions. We demonstrate, for the first time, a new method using a matched white-light interferometry (MWI) to cancel fiber dispersion and achieve finer temporal resolution, demonstrating ~20fs temporal resolution in intermodal delays, i.e. 6µm path-length resolution. A 1m-long straight resonantly-enhanced leakage-channel fiber with 100µm core was characterized, showing ~55fs/m relative group delay and a ~29dB mode discrimination between the fundamental and second-order modes.

19.
Bioorg Med Chem Lett ; 24(11): 2585-8, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24755430

RESUMO

The elongation condensing enzymes in the bacterial fatty acid biosynthesis pathway represent desirable targets for the design of novel, broad-spectrum antimicrobial agents. A series of substituted benzoxazolinones was identified in this study as a novel class of elongation condensing enzyme (FabB and FabF) inhibitors using a two-step virtual screening approach. Structure activity relationships were developed around the benzoxazolinone scaffold showing that N-substituted benzoxazolinones were most active. The benzoxazolinone scaffold has high chemical tractability making this chemotype suitable for further development of bacterial fatty acid synthesis inhibitors.


Assuntos
3-Oxoacil-(Proteína de Transporte de Acila) Sintase/antagonistas & inibidores , Antibacterianos/farmacologia , Benzoxazóis/farmacologia , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/farmacologia , Proteínas de Escherichia coli/antagonistas & inibidores , Escherichia coli/efeitos dos fármacos , Ácido Graxo Sintase Tipo II/antagonistas & inibidores , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/metabolismo , Antibacterianos/síntese química , Antibacterianos/química , Benzoxazóis/síntese química , Benzoxazóis/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Proteínas de Escherichia coli/metabolismo , Ácido Graxo Sintase Tipo II/metabolismo , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
20.
Proc Natl Acad Sci U S A ; 108(37): 15378-83, 2011 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-21876172

RESUMO

The rationale for the pursuit of bacterial type 2 fatty acid synthesis (FASII) as a target for antibacterial drug discovery in Gram-positive organisms is being debated vigorously based on their ability to incorporate extracellular fatty acids. The regulation of FASII by extracellular fatty acids was examined in Staphylococcus aureus and Streptococcus pneumoniae, representing two important groups of pathogens. Both bacteria use the same enzymatic tool kit for the conversion of extracellular fatty acids to acyl-acyl carrier protein, elongation, and incorporation into phospholipids. Exogenous fatty acids completely replace the endogenous fatty acids in S. pneumoniae but support only 50% of phospholipid synthesis in S. aureus. Fatty acids overcame FASII inhibition in S. pneumoniae but not in S. aureus. Extracellular fatty acids strongly suppress malonyl-CoA levels in S. pneumoniae but not in S. aureus, showing a feedback regulatory system in S. pneumoniae that is absent in S. aureus. Fatty acids overcame either a biochemical or a genetic block at acetyl-CoA carboxylase (ACC) in S. aureus, confirming that regulation at the ACC step is the key difference between these two species. Bacteria that possess a stringent biochemical feedback inhibition of ACC and malonyl-CoA formation triggered by environmental fatty acids are able to circumvent FASII inhibition. However, if exogenous fatty acids do not suppress malonyl-CoA formation, FASII inhibitors remain effective in the presence of fatty acid supplements.


Assuntos
Inibidores da Síntese de Ácidos Graxos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/metabolismo , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/metabolismo , Acetil-CoA Carboxilase/metabolismo , Adaptação Fisiológica/efeitos dos fármacos , Benzofuranos/farmacologia , Ácido Graxo Sintases/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos/farmacologia , Testes de Sensibilidade Microbiana , Mutação/genética , Fenótipo , Pironas/farmacologia , Staphylococcus aureus/enzimologia , Streptococcus pneumoniae/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA