Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Water Health ; 22(6): 978-992, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38935450

RESUMO

Wastewater-based epidemiology has expanded as a tool for collecting COVID-19 surveillance data, but there is limited information on the feasibility of this form of surveillance within decentralized wastewater systems (e.g., septic systems). This study assessed SARS-CoV-2 RNA concentrations in wastewater samples from a septic system servicing a mobile home park (66 households) and from two pumping stations serving a similarly sized (71 households) and a larger (1,000 households) neighborhood within a nearby sewershed over 35 weeks in 2020. Also, raw wastewater from a hospital in the same sewershed was sampled. The mobile home park samples had the highest detection frequency (39/39 days) and mean concentration of SARS-CoV-2 RNA (2.7 × 107 gene copies/person/day for the N1) among the four sampling sites. N1 gene and N2 gene copies were highly correlated across mobile home park samples (Pearson's r = 0.93, p < 0.0001). In the larger neighborhood, new COVID-19 cases were reported every week during the sampling period; however, we detected SARS-CoV-2 RNA in 12% of the corresponding wastewater samples. The results of this study suggest that sampling from decentralized wastewater infrastructure can be used for continuous monitoring of SARS-CoV-2 infections.


Assuntos
COVID-19 , RNA Viral , SARS-CoV-2 , Águas Residuárias , Águas Residuárias/virologia , COVID-19/epidemiologia , COVID-19/virologia , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/genética , RNA Viral/genética , RNA Viral/análise , RNA Viral/isolamento & purificação , Humanos , Vigilância Epidemiológica Baseada em Águas Residuárias , Esgotos/virologia
2.
Am J Public Health ; 113(1): 79-88, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36356280

RESUMO

Objectives. To compare 4 COVID-19 surveillance metrics in a major metropolitan area. Methods. We analyzed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in wastewater influent and primary solids in Raleigh, North Carolina, from April 10 through December 13, 2020. We compared wastewater results with lab-confirmed COVID-19 cases and syndromic COVID-like illness (CLI) cases to answer 3 questions: (1) Did they correlate? (2) What was the temporal alignment of the different surveillance systems? (3) Did periods of significant change (i.e., trends) align? Results. In the Raleigh sewershed, wastewater influent, wastewater primary solids, lab-confirmed cases, and CLI were strongly or moderately correlated. Trends in lab-confirmed cases and wastewater influent were observed earlier, followed by CLI and, lastly, wastewater primary solids. All 4 metrics showed sustained increases in COVID-19 in June, July, and November 2020 and sustained decreases in August and September 2020. Conclusions. In a major metropolitan area in 2020, the timing of and trends in municipal wastewater, lab-confirmed case, and syndromic case surveillance of COVID-19 were in general agreement. Public Health Implications. Our results provide evidence for investment in SARS-CoV-2 wastewater and CLI surveillance to complement information provided through lab-confirmed cases. (Am J Public Health. 2023;113(1):79-88. https://doi.org/10.2105/AJPH.2022.307108).


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Águas Residuárias , North Carolina/epidemiologia , Vigilância de Evento Sentinela , RNA Viral
3.
Brain ; 145(7): 2332-2346, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35134125

RESUMO

Metabolism regulates neuronal activity and modulates the occurrence of epileptic seizures. Here, using two rodent models of absence epilepsy, we show that hypoglycaemia increases the occurrence of spike-wave seizures. We then show that selectively disrupting glycolysis in the thalamus, a structure implicated in absence epilepsy, is sufficient to increase spike-wave seizures. We propose that activation of thalamic AMP-activated protein kinase, a sensor of cellular energetic stress and potentiator of metabotropic GABAB-receptor function, is a significant driver of hypoglycaemia-induced spike-wave seizures. We show that AMP-activated protein kinase augments postsynaptic GABAB-receptor-mediated currents in thalamocortical neurons and strengthens epileptiform network activity evoked in thalamic brain slices. Selective thalamic AMP-activated protein kinase activation also increases spike-wave seizures. Finally, systemic administration of metformin, an AMP-activated protein kinase agonist and common diabetes treatment, profoundly increased spike-wave seizures. These results advance the decades-old observation that glucose metabolism regulates thalamocortical circuit excitability by demonstrating that AMP-activated protein kinase and GABAB-receptor cooperativity is sufficient to provoke spike-wave seizures.


Assuntos
Epilepsia Tipo Ausência , Hipoglicemia , Proteínas Quinases Ativadas por AMP/metabolismo , Epilepsia Tipo Ausência/metabolismo , Humanos , Hipoglicemia/induzido quimicamente , Hipoglicemia/metabolismo , Receptores de GABA-B/metabolismo , Convulsões , Tálamo
4.
Am J Physiol Regul Integr Comp Physiol ; 319(1): R43-R49, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32432915

RESUMO

γ-Butyrobetaine hydroxylase (γ-BBH) is the last limiting enzyme of the l-carnitine biosynthesis pathway and plays an important role in catalyzing the hydroxylation of γ-butyrobetaine (γ-BB) to l-carnitine. To study the developmental effect of substrate concentration on the enzyme's specific activity, kinetics of γ-BBH were measured in liver and kidney from newborn and 1-, 7-, 21-, 35-, 56-, and 210-day-old domestic pigs. Fresh tissue homogenates were assayed under nine concentrations of γ-BB from 0 to 1.5 mM. Substrate inhibition associated with age was observed at ≥0.6 mM of γ-BB. Hepatic activity was low at birth but increased after 1 day. By 21 days, the activity rose by 6.6-fold (P < 0.05) and remained constant after 56 days. Renal activity was higher than in liver at birth but remained constant through 35 days. By 56 days, the velocity increased by 44% over the activity at birth (P < 0.05). The apparent Km for γ-BB at birth on average was 2.8-fold higher than at 1 day. The Km value was 60% higher in kidney than liver during development but showed no difference in adult pigs. The total organ enzyme activity increased by 130-fold for liver and 18-fold for kidney as organ weight increased from birth to 56 days. In conclusion, age and substrate affect γ-BBH specific activity and Km for γ-BB in liver and kidney. Whereas the predominant organ for carnitine synthesis is likely the kidney at birth, the liver appears to predominate after the pig exceeds 7 days of age.


Assuntos
Carnitina/biossíntese , gama-Butirobetaína Dioxigenase/metabolismo , Envelhecimento/metabolismo , Animais , Animais Recém-Nascidos , Peso Corporal , Inibidores Enzimáticos/farmacologia , Rim/enzimologia , Rim/crescimento & desenvolvimento , Rim/metabolismo , Cinética , Fígado/enzimologia , Fígado/crescimento & desenvolvimento , Fígado/metabolismo , Tamanho do Órgão , Sus scrofa , Suínos , gama-Butirobetaína Dioxigenase/antagonistas & inibidores
5.
J Microsc ; 279(1): 52-68, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32282936

RESUMO

In this study, the amplitude of frequency response functions of vertical and rotational displacements and resonant frequency of a dagger-shaped atomic force microscope cantilever have been investigated. To increase the accuracy of theoretical model, all necessary details for cantilever and sample surface have been taken into account. In this paper, carbon tetrachloride (CCL4 ), methanol, acetone, water and air have been considered as the environments. In the most cases, presence and absence of tip-sample interaction force have studied. For a sample cantilever immersed in air, both of the Euler-Bernoulli and Timoshenko beam theories have been compared. The results indicate that the tip-sample interaction force raises the resonant frequency. Increasing the liquid viscosity leads to a decrease in the resonant frequency and the amplitude of frequency response functions of vertical and rotational displacements. Increasing the rectangular and tapered parts lengths, decreases the resonant frequency and amplitude of frequency response functions of vertical and rotational displacements. By increasing the cantilever thickness the resonant frequency and amplitude of frequency response functions of vertical and rotational displacements increases. Theoretical model for air and water has been compared with experimental work. Results show good agreement.

6.
J Water Health ; 18(1): 8-18, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32129182

RESUMO

Human mitochondrial DNA (mtDNA) genetic markers are abundant in sewage and highly human-specific, suggesting a great potential for the environmental application as human fecal pollution indicators. Limited data are available on the occurrence and co-occurrence of human mtDNA with fecal bacterial markers in surface waters, and how the abundance of these markers is influenced by rain events. A 1-year sampling study was conducted in a suburban watershed impacted by human sewage contamination to evaluate the performance of a human mtDNA-based marker along with the bacterial genetic markers for human-associated Bacteroidales (BacHum and HF183) and Escherichia coli. Additionally, the human mtDNA-based assay was correlated with rain events and other markers. The mtDNA marker was detected in 92% of samples (n = 140) with a mean concentration of 2.96 log10 copies/100 ml throughout the study period. Human mtDNA was detected with greater abundance than human-associated Bacteroidales that could be attributed to differences in the decay of these markers in the environment. The abundance of all markers was positively correlated with rain events, and human mtDNA abundance was significantly correlated with various bacterial markers. In general, these results should support future risk assessment for impacted watersheds, particularly those affected by human fecal pollution, by evaluating the performance of these markers during rain events.


Assuntos
DNA Mitocondrial , Monitoramento Ambiental/métodos , Microbiologia da Água , Poluentes da Água/análise , Bacteroidetes , Fezes , Marcadores Genéticos , Humanos , Poluição da Água
7.
Artigo em Inglês | MEDLINE | ID: mdl-29469639

RESUMO

While the variety of engineered nanoparticles used in consumer products continues to grow, the use of metal oxide nanoparticles in electronics, textiles, cosmetics and food packaging industry has grown exponentially in recent years, which will inevitably result in their release into wastewater streams in turn impacting the important biological processes in wastewater treatment plants. Among these processes, nitrification play a critical role in nitrogen removal during wastewater treatment, however, it is sensitive to a wide range of inhibitory substances including metal oxide nanoparticles. Therefore, it is essential to systematically asses the effects of metal oxide nanoparticles on nitrification in biological wastewater treatment systems. In this review we discuss the present scenario of metal oxide nanoparticles and their impact on biological wastewater treatment processes, specifically nitrogen removal through nitrification. We also summarize the various methods used to measure nitrification inhibition by metal oxide nanoparticles and highlight corresponding results obtained using those methods. Finally, the key research gaps that need to be addressed in future are discussed.


Assuntos
Nanopartículas Metálicas , Nitrificação/efeitos dos fármacos , Óxidos/farmacologia , Eliminação de Resíduos Líquidos , Purificação da Água , Reatores Biológicos , Humanos , Testes de Sensibilidade Microbiana , Nitrogênio , Esgotos/química , Esgotos/microbiologia , Eliminação de Resíduos Líquidos/instrumentação , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Águas Residuárias/microbiologia , Purificação da Água/instrumentação , Purificação da Água/métodos
8.
Integr Comp Biol ; 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003243

RESUMO

Musculoskeletal simulations can provide insights into the underlying mechanisms that govern animal locomotion. In this study, we describe the development of a new musculoskeletal model of the horse, and to our knowledge present the first fully muscle-driven, predictive simulations of equine locomotion. Our goal was to simulate a model that captures only the gross musculoskeletal structure of a horse, without specialized morphological features. We mostly present simulations acquired using feedforward control, without state feedback ("top-down control"). Without using kinematics or motion capture data as an input, we have simulated a variety of gaits that are commonly used by horses (walk, pace, trot, tölt, and collected gallop). We also found a selection of gaits that are not normally seen in horses (half bound, extended gallop, ambling). Due to the clinical relevance of the trot, we performed a tracking simulation that included empirical joint angle deviations in the cost function. To further demonstrate the flexibility of our model, we also present a simulation acquired using spinal feedback control, where muscle control signals are wholly determined by gait kinematics. Despite simplifications to the musculature, simulated footfalls and ground reaction forces followed empirical patterns. In the tracking simulation, kinematics improved with respect to the fully predictive simulations, and muscle activations showed a reasonable correspondence to electromyographic signals, although we did not predict any anticipatory firing of muscles. When sequentially increasing the target speed, our simulations spontaneously predicted walk-to-run transitions at the empirically determined speed. However, predicted stride lengths were too short over nearly the entire speed range unless explicitly prescribed in the controller, and we also did not recover spontaneous transitions to asymmetric gaits such as galloping. Taken together, our model performed adequately when simulating individual gaits, but our simulation workflow was not able to capture all aspects of gait selection. We point out certain aspects of our workflow that may have caused this, including anatomical simplifications and the use of massless Hill-type actuators. Our model is an extensible, generalized horse model, with considerable scope for adding anatomical complexity. This project is intended as a starting point for continual development of the model and code, which we make available in extensible open-source formats.

9.
bioRxiv ; 2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38826215

RESUMO

Psilocybin, ketamine, and MDMA are psychoactive compounds that exert behavioral effects with distinguishable but also overlapping features. The growing interest in using these compounds as therapeutics necessitates preclinical assays that can accurately screen psychedelics and related analogs. We posit that a promising approach may be to measure drug action on markers of neural plasticity in native brain tissues. We therefore developed a pipeline for drug classification using light sheet fluorescence microscopy of immediate early gene expression at cellular resolution followed by machine learning. We tested male and female mice with a panel of drugs, including psilocybin, ketamine, 5-MeO-DMT, 6-fluoro-DET, MDMA, acute fluoxetine, chronic fluoxetine, and vehicle. In one-versus-rest classification, the exact drug was identified with 67% accuracy, significantly above the chance level of 12.5%. In one-versus-one classifications, psilocybin was discriminated from 5-MeO-DMT, ketamine, MDMA, or acute fluoxetine with >95% accuracy. We used Shapley additive explanation to pinpoint the brain regions driving the machine learning predictions. Our results support a novel approach for screening psychoactive drugs with psychedelic properties.

10.
ACS Chem Neurosci ; 14(3): 468-480, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36630309

RESUMO

Psilocybin is a psychedelic with therapeutic potential. While there is growing evidence that psilocybin exerts its beneficial effects through enhancing neural plasticity, the exact brain regions involved are not completely understood. Determining the impact of psilocybin on plasticity-related gene expression throughout the brain can broaden our understanding of the neural circuits involved in psychedelic-evoked neural plasticity. In this study, whole-brain serial two-photon microscopy and light sheet microscopy were employed to map the expression of the immediate early gene, c-Fos, in male and female mice. The drug-induced c-Fos expression following psilocybin administration was compared to that of subanesthetic ketamine and saline control. Psilocybin and ketamine produced acutely comparable elevations in c-Fos expression in numerous brain regions, including anterior cingulate cortex, locus coeruleus, primary visual cortex, central and basolateral amygdala, medial and lateral habenula, and claustrum. Select regions exhibited drug-preferential differences, such as dorsal raphe and insular cortex for psilocybin and the CA1 subfield of hippocampus for ketamine. To gain insights into the contributions of receptors and cell types, the c-Fos expression maps were related to brain-wide in situ hybridization data. The transcript analyses showed that the endogenous levels of Grin2a and Grin2b predict whether a cortical region is sensitive to drug-evoked neural plasticity for both ketamine and psilocybin. Collectively, the systematic mapping approach produced an unbiased list of brain regions impacted by psilocybin and ketamine. The data are a resource that highlights previously underappreciated regions for future investigations. Furthermore, the robust relationships between drug-evoked c-Fos expression and endogenous transcript distributions suggest glutamatergic receptors as a potential convergent target for how psilocybin and ketamine produce their rapid-acting and long-lasting therapeutic effects.


Assuntos
Alucinógenos , Ketamina , Masculino , Feminino , Camundongos , Animais , Ketamina/farmacologia , Psilocibina/farmacologia , Alucinógenos/farmacologia , Alucinógenos/metabolismo , Genes Precoces , Encéfalo/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Núcleo Dorsal da Rafe/metabolismo
11.
Drug Discov Today ; 28(12): 103818, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37925136

RESUMO

Psychiatric disorders represent the largest cause of disability worldwide. Global interests in psychedelic substances as potentially therapeutic agents for psychiatric disorders has recently re-emerged. Here, we review progress in the development of psychedelic compounds that have potential therapeutic effects as well as the safety concerns. We include psilocybin, N,N-dimethyltryptamine (DMT), lysergic acid diethylamide (LSD), and the entactogen 3,4-methyl-enedioxy-methamphetamine (MDMA). We also review the potential interactive effects these compounds can have with psychotherapeutic approaches. We provide a cutting-edge review of active and recently completed clinical trials based on the published literature (from MEDLINE), published abstracts at citable conferences, clinical trials from the US Clinical Trials registry (clinicaltrials.gov) and media press releases.


Assuntos
Alucinógenos , Transtornos Mentais , Humanos , Alucinógenos/farmacologia , Alucinógenos/uso terapêutico , Dietilamida do Ácido Lisérgico/uso terapêutico , Transtornos Mentais/tratamento farmacológico , Psilocibina/uso terapêutico , N,N-Dimetiltriptamina/uso terapêutico
12.
bioRxiv ; 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37034602

RESUMO

Chronic nicotine results in dependence with withdrawal symptoms upon discontinuation of use, through desensitization of nicotinic acetylcholine receptors and altered cholinergic neurotransmission. Nicotine withdrawal is associated with increased whole-brain functional connectivity and decreased network modularity, however, the role of cholinergic neurons in those changes is unknown. To identify the contribution of nicotinic receptors and cholinergic regions to changes in the functional network, we analyzed the contribution of the main cholinergic regions to brain-wide activation of the immediate early-gene FOS during withdrawal in male mice and correlated these changes with the expression of nicotinic receptor mRNA throughout the brain. We show that the main functional connectivity modules included the main long-range cholinergic regions, which were highly synchronized with the rest of the brain. However, despite this hyperconnectivity they were organized into two anticorrelated networks that were separated into basal forebrain projecting and brainstem-thalamic projecting cholinergic regions, validating a long-standing hypothesis of the organization of the brain cholinergic systems. Moreover, baseline (without nicotine) expression of Chrna2 , Chrna3 , Chrna10 , and Chrnd mRNA of each brain region correlated with withdrawal-induced changes in FOS expression. Finally, by mining the Allen Brain mRNA expression database, we were able to identify 1755 gene candidates and three pathways (Sox2-Oct4-Nanog, JAK-STAT, and MeCP2-GABA) that may contribute to nicotine withdrawal-induced FOS expression. These results identify the dual contribution of the basal forebrain and brainstem-thalamic cholinergic systems to whole-brain functional connectivity during withdrawal; and identify nicotinic receptors and novel cellular pathways that may be critical for the transition to nicotine dependence. Significance Statement: Discontinuation of nicotine use in dependent users is associated with increased whole-brain activation and functional connectivity and leads to withdrawal symptoms. Here we investigated the contribution of the nicotinic cholinergic receptors and main cholinergic projecting brain areas in the whole-brain changes associated with withdrawal. This not only allowed us to visualize and confirm the previously described duality of the cholinergic brain system using this novel methodology, but also identify nicotinic receptors together with 1751 other genes that contribute, and could thus be targets for treatments against, nicotine withdrawal and dependence.

13.
eNeuro ; 10(6)2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37295945

RESUMO

Chronic nicotine results in dependence with withdrawal symptoms on discontinuation of use, through desensitization of nicotinic acetylcholine receptors and altered cholinergic neurotransmission. Nicotine withdrawal is associated with increased whole-brain functional connectivity and decreased network modularity; however, the role of cholinergic neurons in those changes is unknown. To identify the contribution of nicotinic receptors and cholinergic regions to changes in the functional network, we analyzed the contribution of the main cholinergic regions to brain-wide activation of the immediate early-gene Fos during withdrawal in male mice and correlated these changes with the expression of nicotinic receptor mRNA throughout the brain. We show that the main functional connectivity modules included the main long-range cholinergic regions, which were highly synchronized with the rest of the brain. However, despite this hyperconnectivity, they were organized into two anticorrelated networks that were separated into basal forebrain-projecting and brainstem-thalamic-projecting cholinergic regions, validating a long-standing hypothesis of the organization of the brain cholinergic systems. Moreover, baseline (without nicotine) expression of Chrna2, Chrna3, Chrna10, and Chrnd mRNA of each brain region correlated with withdrawal-induced changes in Fos expression. Finally, by mining the Allen Brain mRNA expression database, we were able to identify 1755 gene candidates and three pathways (Sox2-Oct4-Nanog, JAK-STAT, and MeCP2-GABA) that may contribute to nicotine withdrawal-induced Fos expression. These results identify the dual contribution of the basal forebrain and brainstem-thalamic cholinergic systems to whole-brain functional connectivity during withdrawal; and identify nicotinic receptors and novel cellular pathways that may be critical for the transition to nicotine dependence.


Assuntos
Receptores Nicotínicos , Síndrome de Abstinência a Substâncias , Masculino , Camundongos , Animais , Nicotina/farmacologia , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Encéfalo/metabolismo , Colinérgicos , RNA Mensageiro , Receptores Colinérgicos/metabolismo
14.
Neuropsychopharmacology ; 48(9): 1257-1266, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37015972

RESUMO

Serotonergic psychedelics are gaining increasing interest as potential therapeutics for a range of mental illnesses. Compounds with short-lived subjective effects may be clinically useful because dosing time would be reduced, which may improve patient access. One short-acting psychedelic is 5-MeO-DMT, which has been associated with improvement in depression and anxiety symptoms in early phase clinical studies. However, relatively little is known about the behavioral and neural mechanisms of 5-MeO-DMT, particularly the durability of its long-term effects. Here we characterized the effects of 5-MeO-DMT on innate behaviors and dendritic architecture in mice. We showed that 5-MeO-DMT induces a dose-dependent increase in head-twitch response that is shorter in duration than that induced by psilocybin at all doses tested. 5-MeO-DMT also substantially suppresses social ultrasonic vocalizations produced during mating behavior. 5-MeO-DMT produces long-lasting increases in dendritic spine density in the mouse medial frontal cortex that are driven by an elevated rate of spine formation. However, unlike psilocybin, 5-MeO-DMT did not affect the size of dendritic spines. These data provide insights into the behavioral and neural consequences underlying the action of 5-MeO-DMT and highlight similarities and differences with those of psilocybin.


Assuntos
Alucinógenos , Transtornos Mentais , Camundongos , Animais , Psilocibina , Instinto , Metoxidimetiltriptaminas/farmacologia , Transtornos Mentais/tratamento farmacológico
15.
Curr Biol ; 32(3): 559-569.e5, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-34914905

RESUMO

Connectomes generated from electron microscopy images of neural tissue unveil the complex morphology of every neuron and the locations of every synapse interconnecting them. These wiring diagrams may also enable inference of synaptic and neuronal biophysics, such as the functional weights of synaptic connections, but this requires integration with physiological data to properly parameterize. Working with a stereotyped olfactory network in the Drosophila brain, we make direct comparisons of the anatomy and physiology of diverse neurons and synapses with subcellular and subthreshold resolution. We find that synapse density and location jointly predict the amplitude of the somatic postsynaptic potential evoked by a single presynaptic spike. Biophysical models fit to data predict that electrical compartmentalization allows axon and dendrite arbors to balance independent and interacting computations. These findings begin to fill the gap between connectivity maps and activity maps, which should enable new hypotheses about how network structure constrains network function.


Assuntos
Conectoma , Animais , Axônios , Drosophila , Neurônios/fisiologia , Sinapses/fisiologia
16.
Chronic Stress (Thousand Oaks) ; 5: 24705470211020446, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34124495

RESUMO

Mood disorders represent a pressing public health issue and significant source of disability throughout the world. The classical monoamine hypothesis, while useful in developing improved understanding and clinical treatments, has not fully captured the complex nature underlying mood disorders. Despite these shortcomings, the monoamine hypothesis continues to dominate the conceptual framework when approaching mood disorders. However, recent advances in basic and clinical research have led to a greater appreciation for the role that amino acid neurotransmitters play in the pathophysiology of mood disorders and as potential targets for novel therapies. In this article we review progress of compounds that focus on these systems. We cover both glutamate-targeting drugs such as: esketamine, AVP-786, REL-1017, AXS-05, rapastinel (GLYX-13), AV-101, NRX-101; as well as GABA-targeting drugs such as: brexanolone (SAGE-547), ganaxolone, zuranolone (SAGE-217), and PRAX-114. We focus the review on phase-II and phase-III clinical trials and evaluate the extant data and progress of these compounds.

17.
Nat Commun ; 12(1): 1115, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33602917

RESUMO

Animals form and update learned associations between otherwise neutral sensory cues and aversive outcomes (i.e., punishment) to predict and avoid danger in changing environments. When a cue later occurs without punishment, this unexpected omission of aversive outcome is encoded as reward via activation of reward-encoding dopaminergic neurons. How such activation occurs remains unknown. Using real-time in vivo functional imaging, optogenetics, behavioral analysis and synaptic reconstruction from electron microscopy data, we identify the neural circuit mechanism through which Drosophila reward-encoding dopaminergic neurons are activated when an olfactory cue is unexpectedly no longer paired with electric shock punishment. Reduced activation of punishment-encoding dopaminergic neurons relieves depression of olfactory synaptic inputs to cholinergic neurons. Synaptic excitation by these cholinergic neurons of reward-encoding dopaminergic neurons increases their odor response, thus decreasing aversiveness of the odor. These studies reveal how an excitatory cholinergic relay from punishment- to reward-encoding dopaminergic neurons encodes the absence of punishment as reward, revealing a general circuit motif for updating aversive memories that could be present in mammals.


Assuntos
Dopamina/metabolismo , Drosophila melanogaster/fisiologia , Punição , Recompensa , Animais , Aprendizagem da Esquiva/fisiologia , Condicionamento Clássico , Neurônios Dopaminérgicos/fisiologia , Memória/fisiologia , Reversão de Aprendizagem , Olfato/fisiologia , Sinapses/fisiologia
18.
R Soc Open Sci ; 8(4): 201441, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33996115

RESUMO

Locomotor energetics are an important determinant of an animal's ecological niche. It is commonly assumed that animals minimize locomotor energy expenditure by selecting gait kinematics tuned to the natural frequencies of relevant body parts. We demonstrate that this allows estimation of the preferred step frequency and walking speed of Tyrannosaurus rex, using an approach we introduce as the Natural Frequency Method. Although the tail of bipedal dinosaurs was actively involved in walking, it was suspended passively by the caudal interspinous ligaments. These allowed for elastic energy storage, thereby reducing the metabolic cost of transport. In order for elastic energy storage to be high, step and natural frequencies would have to be matched. Using a 3D morphological reconstruction and a spring-suspended biomechanical model, we determined the tail natural frequency of T. rex (0.66 s-1, range 0.41-0.84), and the corresponding walking speed (1.28 m s-1, range 0.80-1.64), which we argue to be a good indicator of preferred walking speed (PWS). The walking speeds found here are lower than earlier estimations for large theropods, but agree quite closely with PWS of a diverse group of extant animals. The results are most sensitive to uncertainties regarding ligament moment arms, vertebral kinematics and ligament composition. However, our model formulation and method for estimation of walking speed are unaffected by assumptions regarding muscularity, and therefore offer an independent line of evidence within the field of dinosaur locomotion.

19.
R Soc Open Sci ; 8(7): 211139, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34295534

RESUMO

[This corrects the article DOI: 10.1098/rsos.201441.][This corrects the article DOI: 10.1098/rsos.201441.].

20.
Sci Adv ; 7(18)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33910893

RESUMO

Organ development in plants predominantly occurs postembryonically through combinatorial activity of meristems; therefore, meristem and organ fate are intimately connected. Inflorescence morphogenesis in grasses (Poaceae) is complex and relies on a specialized floral meristem, called spikelet meristem, that gives rise to all other floral organs and ultimately the grain. The fate of the spikelet determines reproductive success and contributes toward yield-related traits in cereal crops. Here, we examined the transcriptional landscapes of floral meristems in the temperate crop barley (Hordeum vulgare L.) using RNA-seq of laser capture microdissected tissues from immature, developing floral structures. Our unbiased, high-resolution approach revealed fundamental regulatory networks, previously unknown pathways, and key regulators of barley floral fate and will equally be indispensable for comparative transcriptional studies of grass meristems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA