Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Physiol ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39115378

RESUMO

Starch metabolism in guard cells plays a central role in regulating stomatal movement in response to light, elevated ambient CO2 and potentially other abiotic and biotic factors. Here, we discuss how various guard cell signal transduction pathways converge to promote rearrangements in guard cell starch metabolism for efficient stomatal responses, an essential physiological process that sustains plant productivity and stress tolerance. We suggest manipulation of guard cell starch dynamics as a previously overlooked strategy to improve stomatal behaviour under changing environmental conditions.

2.
New Phytol ; 238(5): 1942-1956, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36908088

RESUMO

Acclimation of root growth is vital for plants to survive salt stress. Halophytes are great examples of plants that thrive even under severe salinity, but their salt tolerance mechanisms, especially those mediated by root responses, are still largely unknown. We compared root growth responses of the halophyte Schrenkiella parvula with its glycophytic relative species Arabidopsis thaliana under salt stress and performed transcriptomic analysis of S. parvula roots to identify possible gene regulatory networks underlying their physiological responses. Schrenkiella parvula roots do not avoid salt and experience less growth inhibition under salt stress. Salt-induced abscisic acid levels were higher in S. parvula roots compared with Arabidopsis. Root transcriptomic analysis of S. parvula revealed the induction of sugar transporters and genes regulating cell expansion and suberization under salt stress. 14 C-labeled carbon partitioning analyses showed that S. parvula continued allocating carbon to roots from shoots under salt stress while carbon barely allocated to Arabidopsis roots. Further physiological investigation revealed that S. parvula roots maintained root cell expansion and enhanced suberization under severe salt stress. In summary, roots of S. parvula deploy multiple physiological and developmental adjustments under salt stress to maintain growth, providing new avenues to improve salt tolerance of plants using root-specific strategies.


Assuntos
Arabidopsis , Brassicaceae , Arabidopsis/genética , Carbono , Brassicaceae/genética , Plantas Tolerantes a Sal , Tolerância ao Sal , Salinidade , Estresse Fisiológico/genética , Raízes de Plantas/genética , Regulação da Expressão Gênica de Plantas
3.
BMC Infect Dis ; 13: 124, 2013 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-23497323

RESUMO

BACKGROUND: Long Term Care Facilities (LTCFs) play a key role in guaranteeing care to patients in developed countries. Many patients, mostly elderly, access LTCFs at some time in their lives, and their healthcare pathways often require them to move back and forth between hospital and outpatient settings. These patterns bring about new challenges regarding infection control, especially healthcare associated infections. METHODS: A point prevalence study was conducted in 23 Italian LTCFs, to identify colonization in patients with urinary catheter (>24 hours). Species identification, susceptibility tests and extended spectrum beta lactamase (ESBL) production screenings were performed using Vitek 2 System. Enterobacteria identified by Vitek 2 System as ESBL-producers or suspected AmpC hyperproducers on the basis of cephamycin resistance, were sent to a research laboratory where they underwent a double-disk synergy test. Finally, ESBL-producers were screened for bla resistance genes by PCR assay. RESULTS: 211 patients with catheter were screened, 185 out of 211 patients showed positive samples for the presence of Enterobacteriaceae, 114 of these 185 patients were colonized by extended spectrum cephalosporins resistant microorganisms. We identified a total of 257 Gram negative pathogens, of which 51.8% (133/257) were extended spectrum cephalosporins resistant. 7 out of 133 cephamycin not susceptible strains proved to be AmpC-type beta-lactamases and 125/133 ESBL-producers; 1 was not further characterized. 43 out of 257 (16.7%) E. coli, 37/257 (14.4%) P. mirabilis, 20/257 (7.8%), P. stuartii, 14/257 (5.4%) M. morganii, 7/257 (2.7%), K. pneumoniae, 4/257 (1.6%) C. koseri proved to be overall ESBL-producers by double-disk synergy test. Third and fourth generation cephalosporin resistant P. mirabilis, P. stuartii and M. morganii strains mainly harboured a blaTEM gene (95.9%), while 89.1% of E. coli were positive for the blaCTX-M determinant by PCR and sequencing. Patients with decubitus had a higher risk of colonization by at least one resistant isolate (p < 0.01). Samples of patients undergoing antibiotic therapy and patients with decubitus showed a higher risk (p < 0.05) of colonization by beta-lactam resistant microorganisms. CONCLUSIONS: These data confirm the presence of high percentages of ESBL-positive Enterobacteria in Italian LTCFs and the predominance of CTX-M type ESBL in E. coli. The alarming presence of ESBL-producing Enterobacteriaceae in Italian LTCFs can seriously compromise the effectiveness of antibiotic therapy.acilities (LTCFs), Antimicrobial resistance.


Assuntos
Portador Sadio/microbiologia , Portador Sadio/urina , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/urina , Enterobacteriaceae/enzimologia , beta-Lactamases/biossíntese , Idoso de 80 Anos ou mais , Estudos Transversais , Enterobacteriaceae/genética , Enterobacteriaceae/isolamento & purificação , Feminino , Humanos , Assistência de Longa Duração , Masculino , Prevalência , Análise de Regressão , Cateterismo Urinário/efeitos adversos , Urina/microbiologia , beta-Lactamases/genética
4.
Eur J Biochem ; 270(16): 3422-31, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12899699

RESUMO

A new enzyme, S-adenosyl-l-methionine:flavonoid 4'-O-methyltransferase (EC 2.1.1.-) (F 4'-OMT), has been purified 1 399-fold from the tissues of carnation (Dianthus caryophyllus L). The enzyme, with a molecular mass of 43-45 kDa and a pI of 4.15, specifically methylates the hydroxy substituent in 4'-position of the flavones, flavanones and isoflavones in the presence of S-adenosyl-l-methionine. A high affinity for the flavone kaempferol was observed (Km = 1.7 micro m; Vmax = 95.2 micro mol.min-1.mg-1), while other 4'-hydroxylated flavonoids proved likewise to be suitable substrates. Enzyme activity had no apparent Mg++ requirement but was inhibited by SH-group reagents. The optimum pH value for F 4'-OMT activity was found to be around neutrality. Kinetic analysis of the enzyme bi-substrate reaction indicates a Ping-Pong mechanism and excludes the formation of a ternary complex. The F 4'-OMT activity was increased, in both in vitro and in vivo carnation tissues, by the inoculation with Fusarium oxysporum f. sp. dianthi. The enzyme did not display activity towards hydroxycinnamic acid derivatives, some of which are involved, as methylated monolignols, in lignin biosynthesis; the role of this enzyme could be therefore mainly defensive, rather than structural, although its precise function still needs to be ascertained.


Assuntos
Dianthus/enzimologia , Metiltransferases/isolamento & purificação , Cromatografia em Gel , Cromatografia Líquida de Alta Pressão , Cromatografia por Troca Iônica , Eletroforese em Gel de Poliacrilamida , Concentração de Íons de Hidrogênio , Cinética , Metiltransferases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA