Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 22(7): 2589-2594, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35302763

RESUMO

Two novel properties, unique for semiconductors, a negative electron affinity and a high p-type surface electrical conductivity, were discovered in diamond at the end of the last century. Both properties appear when the diamond surface is hydrogenated. A natural question arises: is the influence of the surface hydrogen on diamond limited only to the electrical properties? Here, for the first time to our knowledge, we observe a transparency peak at 1328 cm-1 in the infrared absorption of hydrogen-terminated pure (undoped) nanodiamonds. This new optical property is ascribed to Fano-type destructive interference between zone-center optical phonons and free carriers (holes) appearing in the near-surface layer of hydrogenated nanodiamond. This work opens the way to explore the physics of electron-phonon coupling in undoped semiconductors and promises the application of H-terminated nanodiamonds as a new optical material with induced transparency in the infrared optical range.

2.
Sci Rep ; 11(1): 14228, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34244547

RESUMO

Nanodiamonds hosting temperature-sensing centers constitute a closed thermodynamic system. Such a system prevents direct contact of the temperature sensors with the environment making it an ideal environmental insensitive nanosized thermometer. A new design of a nanodiamond thermometer, based on a 500-nm luminescent nanodiamond embedded into the inner channel of a glass submicron pipette is reported. All-optical detection of temperature, based on spectral changes of the emission of "silicon-vacancy" centers with temperature, is used. We demonstrate the applicability of the thermometric tool to the study of temperature distribution near a local heater, placed in an aqueous medium. The calculated and experimental values of temperatures are shown to coincide within measurement error at gradients up to 20 °C/µm. Until now, temperature measurements on the submicron scale at such high gradients have not been performed. The new thermometric tool opens up unique opportunities to answer the urgent paradigm-shifting questions of cell physiology thermodynamics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA