RESUMO
In this study, we present a current state-of-the-art review of middle-to-near IR emission spectra of four simple astrophysically relevant molecular radicals-OH, NH, CN and CH. The spectra of these radicals were measured by means of time-resolved Fourier transform infrared spectroscopy in the 700-7500 cm-1 spectral range and with 0.07-0.02 cm-1 spectral resolution. The radicals were generated in a glow discharge of gaseous mixtures in a specially designed discharge cell. The spectra of short-lived radicals published here are of great importance, especially for the detailed knowledge and study of the composition of exoplanetary atmospheres in selected new planets. Today, with the help of the James Webb telescope and upcoming studies with the help of Plato and Ariel satellites, when the investigated spectral area is extended into the infrared spectral range, it means that detailed knowledge of the infrared spectra of not only stable molecules but also the spectra of short-lived radicals or ions, is indispensable. This paper follows a simple structure. Each radical is described in a separate chapter, starting with historical and actual theoretical background, continued by our experimental results and concluded by spectral line lists with assigned notation.
RESUMO
Synthesis of RNA nucleobases from formamide is one of the recurring topics of prebiotic chemistry research. Earlier reports suggest that thymine, the substitute for uracil in DNA, may also be synthesized from formamide in the presence of catalysts enabling conversion of formamide to formaldehyde. In the current paper, we show that to a lesser extent conversion of uracil to thymine may occur even in the absence of catalysts. This is enabled by the presence of formic acid in the reaction mixture that forms as the hydrolysis product of formamide. Under the reaction conditions of our study, the disproportionation of formic acid may produce formaldehyde that hydroxymethylates uracil in the first step of the conversion process. The experiments are supplemented by quantum chemical modeling of the reaction pathway, supporting the plausibility of the mechanism suggested by Saladino and coworkers.
Assuntos
Formamidas/química , Timina/química , Origem da Vida , Uracila/químicaRESUMO
In this work we present a time-resolved FTIR spectroscopic study on kinetics of atomic and molecular species, specifically CO, CN radical, N2, HCN and CO2 generated in a glow discharge of formamide-nitrogen-water mixture in a helium buffer gas. Radicals such as NH, CH and OH have been proven to be fundamental stones of subsequent chemical reactions having a crucial role in a prebiotic synthesis of large organic molecules. This work contains three main goals. Firstly, we present our time-resolved spectra of formamide decomposition products and discuss the mechanism of collisional excitations between specific species. Secondly, according to our time resolution, we demonstrate and explain the band shape of CO's first overtone and the energy transfer between excited nitrogen and CO, present in our spectra. Lastly, we present theoretical results for the non-LTE modelling of the spectra using bi-temperature approach and a 1D harmonic Franck-Condon approach for the multi-molecule spectra of the formamide decomposition process in the 1800-5600 cm-1 spectral range.
Assuntos
Formamidas , Nitrogênio , Formamidas/química , Cinética , Nitrogênio/química , Temperatura , ÁguaRESUMO
Although the effect of ionizing radiation on prebiotic chemistry is often overlooked, primordial natural radioactivity might have been an important source of energy for various chemical transformations. Estimates of the abundances of short-lived radionuclides on early Earth suggest that the primordial intensity of endogenous terrestrial radioactivity was up to 4 × 103 times higher than it is today. Therefore, we assume that chemical substances in contact with radioactive rocks should therefore undergo radiolysis. The calculations are followed by research investigating the influence of ionizing γ radiation on basic prebiotic substances, including formamide mixed with various clays, which might have played the role of a catalyst and an agent that partially blocked radiation that was potentially destructive for the products. Our explorations of this effect have shown that the irradiation of formamide-clay mixtures at doses of â¼6 kGy produces significant amounts of urea (up to the maximal concentration of approximately 250 mg L-1), which plays a role in HCN-based prebiotic chemistry.
RESUMO
Chemical environments of young planets are assumed to be significantly influenced by impacts of bodies lingering after the dissolution of the protoplanetary disk. We explore the chemical consequences of impacts of these bodies under reducing planetary atmospheres dominated by carbon monoxide, methane, and molecular nitrogen. Impacts were simulated by using a terawatt high-power laser system. Our experimental results show that one-pot impact-plasma-initiated synthesis of all the RNA canonical nucleobases and the simplest amino acid glycine is possible in this type of atmosphere in the presence of montmorillonite. This one-pot synthesis begins with de novo formation of hydrogen cyanide (HCN) and proceeds through intermediates such as cyanoacetylene and urea.
Assuntos
Glicina , Cianeto de Hidrogênio , Nucleotídeos , Atmosfera , Meio Ambiente ExtraterrenoRESUMO
Besides delivering plausible prebiotic feedstock molecules and high-energy initiators, extraterrestrial impacts could also affect the process of abiogenesis by altering the early Earth's geological environment in which primitive life was conceived. We show that iron-rich smectites formed by reprocessing of basalts due to the residual post-impact heat could catalyze the synthesis and accumulation of important prebiotic building blocks such as nucleobases, amino acids and urea.
Assuntos
Argila/química , Ferro/química , Meteoroides , Silicatos/química , Aminoácidos/química , Catálise , Planeta Terra , Evolução Química , Meio Ambiente Extraterreno/química , Origem da Vida , Ureia/químicaRESUMO
A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.
RESUMO
Recent results in prebiotic chemistry implicate hydrogen cyanide (HCN) as the source of carbon and nitrogen for the synthesis of nucleotide, amino acid and lipid building blocks. HCN can be produced during impact events by reprocessing of carbonaceous and nitrogenous materials from both the impactor and the atmosphere; it can also be produced from these materials by electrical discharge. Here we investigate the effect of high energy events on a range of starting mixtures representative of various atmosphere-impactor volatile combinations. Using continuously scanning time-resolved spectrometry, we have detected ·CN radical and excited CO as the initially most abundant products. Cyano radicals and excited carbon monoxide molecules in particular are reactive, energy-rich species, but are resilient owing to favourable Franck-Condon factors. The subsequent reactions of these first formed excited species lead to the production of ground-state prebiotic building blocks, principally HCN.