Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurol Neurosurg Psychiatry ; 95(3): 235-240, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-37739783

RESUMO

BACKGROUND: Type II spinal muscular atrophy (SMA) often leads to scoliosis in up to 90% of cases. While pharmacological treatments have shown improvements in motor function, their impact on scoliosis progression remains unclear. This study aims to evaluate potential differences in scoliosis progression between treated and untreated SMA II patients. METHODS: Treatment effect on Cobb's angle annual changes and on reaching a 50° Cobb angle was analysed in treated and untreated type II SMA patients with a minimum 1.5-year follow-up. A sliding cut-off approach identified the optimal treatment subpopulation based on age, Cobb angle and Hammersmith Functional Motor Scale Expanded at the initial visit. Mann-Whitney U-test assessed statistical significance. RESULTS: There were no significant differences in baseline characteristics between the untreated (n=46) and treated (n=39) populations. The mean Cobb angle variation did not significantly differ between the two groups (p=0.4). Optimal cut-off values for a better outcome were found to be having a Cobb angle <26° or an age <4.5 years. When using optimal cut-off, the treated group showed a lower mean Cobb variation compared with the untreated group (5.61 (SD 4.72) degrees/year vs 10.05 (SD 6.38) degrees/year; p=0.01). Cox-regression analysis indicated a protective treatment effect in reaching a 50° Cobb angle, significant in patients <4.5 years old (p=0.016). CONCLUSION: This study highlights that pharmacological treatment, if initiated early, may slow down the progression of scoliosis in type II SMA patients. Larger studies are warranted to further investigate the effectiveness of individual pharmacological treatment on scoliosis progression in this patient population.


Assuntos
Escoliose , Atrofias Musculares Espinais da Infância , Humanos , Pré-Escolar , Escoliose/diagnóstico por imagem , Escoliose/terapia , Resultado do Tratamento , Estudos Retrospectivos
2.
Eur J Neurol ; 31(3): e16153, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38015472

RESUMO

BACKGROUND: The 30-day hospital re-admission rate is a quality measure of hospital care to monitor the efficiency of the healthcare system. The hospital re-admission of acute stroke (AS) patients is often associated with higher mortality rates, greater levels of disability and increased healthcare costs. The aim of our study was to identify predictors of unplanned 30-day hospital re-admissions after discharge of AS patients and define an early re-admission risk score (RRS). METHODS: This observational, retrospective study was performed on AS patients who were discharged between 2014 and 2019. Early re-admission predictors were identified by machine learning models. The performances of these models were assessed by receiver operating characteristic curve analysis. RESULTS: Of 7599 patients with AS, 3699 patients met the inclusion criteria, and 304 patients (8.22%) were re-admitted within 30 days from discharge. After identifying the predictors of early re-admission by logistic regression analysis, RRS was obtained and consisted of seven variables: hemoglobin level, atrial fibrillation, brain hemorrhage, discharge home, chronic obstructive pulmonary disease, one and more than one hospitalization in the previous year. The cohort of patients was then stratified into three risk categories: low (RRS = 0-1), medium (RRS = 2-3) and high (RRS >3) with re-admission rates of 5%, 8% and 14%, respectively. CONCLUSIONS: The identification of risk factors for early re-admission after AS and the elaboration of a score to stratify at discharge time the risk of re-admission can provide a tool for clinicians to plan a personalized follow-up and contain healthcare costs.


Assuntos
Acidente Vascular Cerebral , Humanos , Estudos Retrospectivos , Fatores de Risco , Acidente Vascular Cerebral/epidemiologia , Acidente Vascular Cerebral/terapia , Hospitais , Aprendizado de Máquina
3.
Diagnostics (Basel) ; 14(4)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38396484

RESUMO

The aim of the study was to build a machine learning-based predictive model to discriminate between hospitalized patients at low risk and high risk of bloodstream infection (BSI). A Data Mart including all patients hospitalized between January 2016 and December 2019 with suspected BSI was built. Multivariate logistic regression was applied to develop a clinically interpretable machine learning predictive model. The model was trained on 2016-2018 data and tested on 2019 data. A feature selection based on a univariate logistic regression first selected candidate predictors of BSI. A multivariate logistic regression with stepwise feature selection in five-fold cross-validation was applied to express the risk of BSI. A total of 5660 hospitalizations (4026 and 1634 in the training and the validation subsets, respectively) were included. Eleven predictors of BSI were identified. The performance of the model in terms of AUROC was 0.74. Based on the interquartile predicted risk score, 508 (31.1%) patients were defined as being at low risk, 776 (47.5%) at medium risk, and 350 (21.4%) at high risk of BSI. Of them, 14.2% (72/508), 30.8% (239/776), and 64% (224/350) had a BSI, respectively. The performance of the predictive model of BSI is promising. Computational infrastructure and machine learning models can help clinicians identify people at low risk for BSI, ultimately supporting an antibiotic stewardship approach.

4.
Eur Stroke J ; : 23969873241253366, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778480

RESUMO

INTRODUCTION: Formulating reliable prognosis for ischemic stroke patients remains a challenging task. We aimed to develop an artificial intelligence model able to formulate in the first 24 h after stroke an individualized prognosis in terms of NIHSS. PATIENTS AND METHODS: Seven hundred ninety four acute ischemic stroke patients were divided into a training (597) and testing (197) cohort. Clinical and instrumental data were collected in the first 24 h. We evaluated the performance of four machine-learning models (Random Forest, K-Nearest Neighbors, Support Vector Machine, XGBoost) in predicting NIHSS at discharge both in terms of variation between discharge and admission (regressor approach) and in terms of severity class namely NIHSS 0-5, 6-10, 11-20, >20 (classifier approach). We used Shapley Additive exPlanations values to weight features impact on predictions. RESULTS: XGBoost emerged as the best performing model. The classifier and regressor approaches perform similarly in terms of accuracy (80% vs 75%) and f1-score (79% vs 77%) respectively. However, the regressor has higher precision (85% vs 68%) in predicting prognosis of very severe stroke patients (NIHSS > 20). NIHSS at admission and 24 hours, GCS at 24 hours, heart rate, acute ischemic lesion on CT-scan and TICI score were the most impacting features on the prediction. DISCUSSION: Our approach, which employs an artificial intelligence based-tool, inherently able to continuously learn and improve its performance, could improve care pathway and support stroke physicians in the communication with patients and caregivers. CONCLUSION: XGBoost reliably predicts individualized outcome in terms of NIHSS at discharge in the first 24 hours after stroke.

5.
J Am Heart Assoc ; 12(13): e029071, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37382176

RESUMO

Background Guidelines recommend using multiple drugs in patients with heart failure (HF) with reduced ejection fraction, but there is a paucity of real-world data on the simultaneous initiation of the 4 pharmacological pillars at discharge after a decompensation event. Methods and Results A retrospective data mart, including patients diagnosed with HF, was implemented. Consecutively admitted patients with HF with reduced ejection fraction were selected through an automated approach and categorized according to the number/type of treatments prescribed at discharge. The prevalence of contraindications and cautions for HF with reduced ejection fraction treatments was systematically assessed. Logistic regression models were fitted to assess predictors of the number of treatments (≥2 versus <2 drugs) prescribed and the risk of rehospitalization. A population of 305 patients with a first episode of HF hospitalization and a diagnosis of HF with reduced ejection fraction (ejection fraction, <40%) was selected. At discharge, 49.2% received 2 current recommended drugs, ß-blockers were prescribed in 93.4%, while a renin-angiotensin system inhibitor or an angiotensin receptor-neprilysin inhibitor was prescribed in 68.2%. A mineralocorticoid receptor antagonist was prescribed in 32.5%, although none of the patients showed contraindications to mineralocorticoid receptor antagonist prescription. A sodium-glucose cotransporter 2 inhibitor could be prescribed in 71.1% of patients. On the basis of current recommendations, 46.2% could receive the 4 foundational drugs at discharge. Renal dysfunction was associated with <2 foundational drugs prescribed. After adjusting for age and renal function, use of ≥2 drugs was associated with lower risk of rehospitalization during the 30 days after discharge. Conclusions A quadruple therapy could be directly implementable at discharge, potentially providing prognostic advantages. Renal dysfunction was the main prevalent condition limiting this approach.


Assuntos
Insuficiência Cardíaca , Nefropatias , Disfunção Ventricular Esquerda , Humanos , Alta do Paciente , Volume Sistólico/fisiologia , Antagonistas de Receptores de Mineralocorticoides/uso terapêutico , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Estudos Retrospectivos , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/tratamento farmacológico , Disfunção Ventricular Esquerda/tratamento farmacológico , Anti-Hipertensivos/uso terapêutico , Antagonistas de Receptores de Angiotensina/uso terapêutico
6.
Healthcare (Basel) ; 11(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37444784

RESUMO

To evaluate the adoption of an integrated eHealth platform for televisit/monitoring/consultation during the COVID-19 pandemic. METHODS: During the lockdown imposed by the Italian government during the COVID19 pandemic spread, a dedicated multi-professional working group was set up in the Radiation Oncology Department with the primary aim of reducing patients' exposure to COVID-19 by adopting de-centralized/remote consultation methodologies. Each patient's clinical history was screened before the visit to assess if a traditional clinical visit would be recommended or if a remote evaluation was to be preferred. Real world data (RWD) in the form of patient-reported outcomes (PROMs) and patient reported experiences (PREMs) were collected from patients who underwent televisit/teleconsultation through the eHealth platform. RESULTS: During the lockdown period (from 8 March to 4 May 2020) a total of 1956 visits were managed. A total of 983 (50.26%) of these visits were performed via email (to apply for and to upload of documents) and phone call management; 31 visits (1.58%) were performed using the eHealth system. Substantially, all patients found the eHealth platform useful and user-friendly, consistently indicating that this type of service would also be useful after the pandemic. CONCLUSIONS: The rapid implementation of an eHealth system was feasible and well-accepted by the patients during the pandemic. However, we believe that further evidence is to be generated to further support large-scale adoption.

7.
Intern Emerg Med ; 18(5): 1415-1427, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37491564

RESUMO

Increased values of the FIB-4 index appear to be associated with poor clinical outcomes in COVID-19 patients. This study aimed to develop and validate predictive mortality models, using data upon admission of hospitalized patients in four COVID-19 waves between March 2020 and January 2022. A single-center cohort study was performed on consecutive adult patients with Covid-19 admitted at the Fondazione Policlinico Gemelli IRCCS (Rome, Italy). Artificial intelligence and big data processing were used to retrieve data. Patients and clinical characteristics of patients with available FIB-4 data derived from the Gemelli Generator Real World Data (G2 RWD) were used to develop predictive mortality models during the four waves of the COVID-19 pandemic. A logistic regression model was applied to the training and test set (75%:25%). The model's performance was assessed by receiver operating characteristic (ROC) curves. A total of 4936 patients were included. Hypertension (38.4%), cancer (12.15%) and diabetes (16.3%) were the most common comorbidities. 23.9% of patients were admitted to ICU, and 12.6% had mechanical ventilation. During the study period, 762 patients (15.4%) died. We developed a multivariable logistic regression model on patient data from all waves, which showed that the FIB-4 score > 2.53 was associated with increased mortality risk (OR = 4.53, 95% CI 2.83-7.25; p ≤ 0.001). These data may be useful in the risk stratification at the admission of hospitalized patients with COVID-19.


Assuntos
COVID-19 , Adulto , Humanos , SARS-CoV-2 , RNA Viral , Mortalidade Hospitalar , Estudos de Coortes , Pandemias , Inteligência Artificial , Estudos Retrospectivos
8.
Front Cardiovasc Med ; 10: 1104699, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37034335

RESUMO

Background: Heart failure (HF) is a multifaceted clinical syndrome characterized by different etiologies, risk factors, comorbidities, and a heterogeneous clinical course. The current model, based on data from clinical trials, is limited by the biases related to a highly-selected sample in a protected environment, constraining the applicability of evidence in the real-world scenario. If properly leveraged, the enormous amount of data from real-world may have a groundbreaking impact on clinical care pathways. We present, here, the development of an HF DataMart framework for the management of clinical and research processes. Methods: Within our institution, Fondazione Policlinico Universitario A. Gemelli in Rome (Italy), a digital platform dedicated to HF patients has been envisioned (GENERATOR HF DataMart), based on two building blocks: 1. All retrospective information has been integrated into a multimodal, longitudinal data repository, providing in one single place the description of individual patients with drill-down functionalities in multiple dimensions. This functionality might allow investigators to dynamically filter subsets of patient populations characterized by demographic characteristics, biomarkers, comorbidities, and clinical events (e.g., re-hospitalization), enabling agile analyses of the outcomes by subsets of patients. 2. With respect to expected long-term health status and response to treatments, the use of the disease trajectory toolset and predictive models for the evolution of HF has been implemented. The methodological scaffolding has been constructed in respect of a set of the preferred standards recommended by the CODE-EHR framework. Results: Several examples of GENERATOR HF DataMart utilization are presented as follows: to select a specific retrospective cohort of HF patients within a particular period, along with their clinical and laboratory data, to explore multiple associations between clinical and laboratory data, as well as to identify a potential cohort for enrollment in future studies; to create a multi-parametric predictive models of early re-hospitalization after discharge; to cluster patients according to their ejection fraction (EF) variation, investigating its potential impact on hospital admissions. Conclusion: The GENERATOR HF DataMart has been developed to exploit a large amount of data from patients with HF from our institution and generate evidence from real-world data. The two components of the HF platform might provide the infrastructural basis for a combined patient support program dedicated to continuous monitoring and remote care, assisting patients, caregivers, and healthcare professionals.

9.
J Pers Med ; 12(9)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36143285

RESUMO

Personalized medicine (PM) bridges several disciplines for understanding and addressing prevalent, complex, or rare situations in human health (e.g., complex phenotyping, risk stratification, etc.); therefore, digital and technological solutions have been integrated in the field to boost innovation and new knowledge generation. The open innovation (OI) paradigm proposes a method by which to respectfully manage disruptive change in biomedical organizations, as experienced by many organizations during digital transformation and the COVID-19 pandemic. In this article, we focus on how this paradigm has catalyzed the transition from PM to personalized digital medicine in a large-volume research hospital. Methods, challenges, and results are discussed. This case study is an endeavor to confirm that OI strategies could help manage urgent needs from the healthcare environment, while achieving sustainability-oriented, accountable innovation.

10.
PLoS One ; 17(5): e0267930, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35511762

RESUMO

It is known from previous literature that type II Spinal Muscular Atrophy (SMA) patients generally, after the age of 5 years, presents a steep deterioration until puberty followed by a relative stability, as most abilities have been lost. Although it is possible to identify points of slope indicating early improvement, steep decline and relative stabilizations, there is still a lot of variability within each age group and it's not always possible to predict individual trajectories of progression from age only. The aim of the study was to develop a predictive model based on machine learning using an XGBoost algorithm for regression and report, explore and quantify, in a single centre longitudinal natural history study, the influence of clinical variables on the 6/12-months Hammersmith Motor Functional Scale Expanded score prediction (HFMSE). This study represents the first approach to artificial intelligence and trained models for the prediction of individualized trajectories of HFMSE disease progression using individual characteristics of the patient. The application of this method to larger cohorts may allow to identify different classes of progression, a crucial information at the time of the new commercially available therapies.


Assuntos
Atrofia Muscular Espinal , Atrofias Musculares Espinais da Infância , Inteligência Artificial , Pré-Escolar , Humanos , Aprendizado de Máquina , Atrofia Muscular Espinal/diagnóstico , Estudo de Prova de Conceito
11.
PLoS One ; 17(7): e0271681, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35905042

RESUMO

The aim of this study was to establish the possible effect of age, corticosteroid treatment and brain dystrophin involvement on motor function in young boys affected by Duchenne Muscular Dystrophy who were assessed using the North Star Ambulatory Assessment between the age of 4 and 7 years. The study includes 951 North Star assessments from 226 patients. Patients were subdivided according to age, to the site of mutation and therefore to the involvement of different brain dystrophin isoforms and to corticosteroids duration. There was a difference in the maximum North Star score achieved among patients with different brain dystrophin isoforms (p = 0.007). Patients with the involvement of Dp427, Dp140 and Dp71, had lower maximum NSAA scores when compared to those with involvement of Dp427 and Dp140 or of Dp427 only. The difference in the age when the maximum score was achieved in the different subgroups did not reach statistical significance. Using a linear regression model on all assessments we found that each of the three variables, age, site of mutation and corticosteroid treatment had an influence on the NSAA values and their progression over time. A second analysis, looking at 12-month changes showed that within this time interval the magnitude of changes was related to corticosteroid treatment but not to site of mutation. Our findings suggest that each of the considered variables appear to play a role in the progression of North Star scores in patients between the age of 4 and 7 years and that these should be carefully considered in the trial design of boys in this age range.


Assuntos
Distrofina , Distrofia Muscular de Duchenne , Corticosteroides/uso terapêutico , Criança , Pré-Escolar , Distrofina/genética , Humanos , Masculino , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/genética , Mutação , Isoformas de Proteínas/genética
12.
Comput Methods Programs Biomed ; 217: 106655, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35158181

RESUMO

BACKGROUND: The COVID-19 pandemic affected healthcare systems worldwide. Predictive models developed by Artificial Intelligence (AI) and based on timely, centralized and standardized real world patient data could improve management of COVID-19 to achieve better clinical outcomes. The objectives of this manuscript are to describe the structure and technologies used to construct a COVID-19 Data Mart architecture and to present how a large hospital has tackled the challenge of supporting daily management of COVID-19 pandemic emergency, by creating a strong retrospective knowledge base, a real time environment and integrated information dashboard for daily practice and early identification of critical condition at patient level. This framework is also used as an informative, continuously enriched data lake, which is a base for several on-going predictive studies. METHODS: The information technology framework for clinical practice and research was described. It was developed using SAS Institute software analytics tool and SAS® Vyia® environment and Open-Source environment R ® and Python ® for fast prototyping and modeling. The included variables and the source extraction procedures were presented. RESULTS: The Data Mart covers a retrospective cohort of 5528 patients with SARS-CoV-2 infection. People who died were older, had more comorbidities, reported more frequently dyspnea at onset, had higher d-dimer, C-reactive protein and urea nitrogen. The dashboard was developed to support the management of COVID-19 patients at three levels: hospital, single ward and individual care level. INTERPRETATION: The COVID-19 Data Mart based on integration of a large collection of clinical data and an AI-based integrated framework has been developed, based on a set of automated procedures for data mining and retrieval, transformation and integration, and has been embedded in the clinical practice to help managing daily care. Benefits from the availability of a Data Mart include the opportunity to build predictive models with a machine learning approach to identify undescribed clinical phenotypes and to foster hospital networks. A real-time updated dashboard built from the Data Mart may represent a valid tool for a better knowledge of epidemiological and clinical features of COVID-19, especially when multiple waves are observed, as well as for epidemic and pandemic events of the same nature (e. g. with critical clinical conditions leading to severe pulmonary inflammation). Therefore, we believe the approach presented in this paper may find several applications in comparable situations even at region or state levels. Finally, models predicting the course of future waves or new pandemics could largely benefit from network of DataMarts.


Assuntos
COVID-19 , Inteligência Artificial , COVID-19/epidemiologia , Tomada de Decisão Clínica , Humanos , Pandemias , Estudos Retrospectivos , SARS-CoV-2
13.
Front Oncol ; 11: 797454, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35047408

RESUMO

AIM: The first prototype of the "Multidisciplinary Tumor Board Smart Virtual Assistant" is presented, aimed to (i) Automated classification of clinical stage starting from different free-text diagnostic reports; (ii) Resolution of inconsistencies by identifying controversial cases drawing the clinician's attention to particular cases worthy for multi-disciplinary discussion; (iii) Support environment for education and knowledge transfer to junior staff; (iv) Integrated data-driven decision making and standardized language and interpretation. PATIENTS AND METHOD: Data from patients affected by Locally Advanced Cervical Cancer (LACC), FIGO stage IB2-IVa, treated between 2015 and 2018 were extracted. Magnetic Resonance (MR), Gynecologic examination under general anesthesia (EAU), and Positron Emission Tomography-Computed Tomography (PET-CT) performed at the time of diagnosis were the items from the Electronic Health Records (eHRs) considered for analysis. An automated extraction of eHR that capture the patient's data before the diagnosis and then, through Natural Language Processing (NLP), analysis and categorization of all data to transform source information into structured data has been performed. RESULTS: In the first round, the system has been used to retrieve all the eHR for the 96 patients with LACC. The system has been able to classify all patients belonging to the training set and - through the NLP procedures - the clinical features were analyzed and classified for each patient. A second important result was the setup of a predictive model to evaluate the patient's staging (accuracy of 94%). Lastly, we created a user-oriented operational tool targeting the MTB who are confronted with the challenge of large volumes of patients to be diagnosed in the most accurate way. CONCLUSION: This is the first proof of concept concerning the possibility of creating a smart virtual assistant for the MTB. A significant benefit could come from the integration of these automated methods in the collaborative, crucial decision stages.

14.
J Pers Med ; 11(2)2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33498985

RESUMO

BACKGROUND: Artificial Intelligence (AI) is increasingly used for process management in daily life. In the medical field AI is becoming part of computerized systems to manage information and encourage the generation of evidence. Here we present the development of the application of AI to IT systems present in the hospital, for the creation of a DataMart for the management of clinical and research processes in the field of breast cancer. MATERIALS AND METHODS: A multidisciplinary team of radiation oncologists, epidemiologists, medical oncologists, breast surgeons, data scientists, and data management experts worked together to identify relevant data and sources located inside the hospital system. Combinations of open-source data science packages and industry solutions were used to design the target framework. To validate the DataMart directly on real-life cases, the working team defined tumoral pathology and clinical purposes of proof of concepts (PoCs). RESULTS: Data were classified into "Not organized, not 'ontologized' data", "Organized, not 'ontologized' data", and "Organized and 'ontologized' data". Archives of real-world data (RWD) identified were platform based on ontology, hospital data warehouse, PDF documents, and electronic reports. Data extraction was performed by direct connection with structured data or text-mining technology. Two PoCs were performed, by which waiting time interval for radiotherapy and performance index of breast unit were tested and resulted available. CONCLUSIONS: GENERATOR Breast DataMart was created for supporting breast cancer pathways of care. An AI-based process automatically extracts data from different sources and uses them for generating trend studies and clinical evidence. Further studies and more proof of concepts are needed to exploit all the potentials of this system.

15.
Sci Rep ; 11(1): 21136, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34707184

RESUMO

The COVID-19 pandemic is impressively challenging the healthcare system. Several prognostic models have been validated but few of them are implemented in daily practice. The objective of the study was to validate a machine-learning risk prediction model using easy-to-obtain parameters to help to identify patients with COVID-19 who are at higher risk of death. The training cohort included all patients admitted to Fondazione Policlinico Gemelli with COVID-19 from March 5, 2020, to November 5, 2020. Afterward, the model was tested on all patients admitted to the same hospital with COVID-19 from November 6, 2020, to February 5, 2021. The primary outcome was in-hospital case-fatality risk. The out-of-sample performance of the model was estimated from the training set in terms of Area under the Receiving Operator Curve (AUROC) and classification matrix statistics by averaging the results of fivefold cross validation repeated 3-times and comparing the results with those obtained on the test set. An explanation analysis of the model, based on the SHapley Additive exPlanations (SHAP), is also presented. To assess the subsequent time evolution, the change in paO2/FiO2 (P/F) at 48 h after the baseline measurement was plotted against its baseline value. Among the 921 patients included in the training cohort, 120 died (13%). Variables selected for the model were age, platelet count, SpO2, blood urea nitrogen (BUN), hemoglobin, C-reactive protein, neutrophil count, and sodium. The results of the fivefold cross-validation repeated 3-times gave AUROC of 0.87, and statistics of the classification matrix to the Youden index as follows: sensitivity 0.840, specificity 0.774, negative predictive value 0.971. Then, the model was tested on a new population (n = 1463) in which the case-fatality rate was 22.6%. The test model showed AUROC 0.818, sensitivity 0.813, specificity 0.650, negative predictive value 0.922. Considering the first quartile of the predicted risk score (low-risk score group), the case-fatality rate was 1.6%, 17.8% in the second and third quartile (high-risk score group) and 53.5% in the fourth quartile (very high-risk score group). The three risk score groups showed good discrimination for the P/F value at admission, and a positive correlation was found for the low-risk class to P/F at 48 h after admission (adjusted R-squared = 0.48). We developed a predictive model of death for people with SARS-CoV-2 infection by including only easy-to-obtain variables (abnormal blood count, BUN, C-reactive protein, sodium and lower SpO2). It demonstrated good accuracy and high power of discrimination. The simplicity of the model makes the risk prediction applicable for patients in the Emergency Department, or during hospitalization. Although it is reasonable to assume that the model is also applicable in not-hospitalized persons, only appropriate studies can assess the accuracy of the model also for persons at home.


Assuntos
COVID-19/mortalidade , Aprendizado de Máquina , Pandemias , SARS-CoV-2 , Idoso , Idoso de 80 Anos ou mais , Contagem de Células Sanguíneas , Análise Química do Sangue , COVID-19/sangue , Estudos de Coortes , Feminino , Mortalidade Hospitalar , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Estatísticos , Análise Multivariada , Oxigênio/sangue , Pandemias/estatística & dados numéricos , Curva ROC , Fatores de Risco , Cidade de Roma/epidemiologia
16.
J Contemp Brachytherapy ; 12(5): 497-500, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33299440

RESUMO

PURPOSE: Artificial intelligence (AI) plays a central role in building decision supporting systems (DSS), and its application in healthcare is rapidly increasing. The aim of this study was to define the role of AI in healthcare, with main focus on radiation oncology (RO) and interventional radiotherapy (IRT, brachytherapy). ARTIFICIAL INTELLIGENCE IN INTERVENTIONAL RADIATION THERAPY: AI in RO has a large impact in providing clinical decision support, data mining and advanced imaging analysis, automating repetitive tasks, optimizing time, and modelling patients and physicians' behaviors in heterogeneous contexts. Implementing AI and automation in RO and IRT can successfully facilitate all the steps of treatment workflow, such as patient consultation, target volume delineation, treatment planning, and treatment delivery. CONCLUSIONS: AI may contribute to improve clinical outcomes through the application of predictive models and DSS optimization. This approach could lead to reducing time-consuming repetitive tasks, healthcare costs, and improving treatment quality assurance and patient's assistance in IRT.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA