Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 690: 1284-1298, 2019 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-31470491

RESUMO

The assessment of ecosystem services (ES) is covered in a fragmented manner by environmental decision support tools that provide information about the potential environmental impacts of supply chains and their products, such as the well-known Life Cycle Assessment (LCA) methodology. Within the flagship project of the Life Cycle Initiative (hosted by UN Environment), aiming at global guidance for life cycle impact assessment (LCIA) indicators, a dedicated subtask force was constituted to consolidate the evaluation of ES in LCA. As one of the outcomes of this subtask force, this paper describes the progress towards consensus building in the LCA domain concerning the assessment of anthropogenic impacts on ecosystems and their associated services for human well-being. To this end, the traditional LCIA structure, which represents the cause-effect chain from stressor to impacts and damages, is re-casted and expanded using the lens of the ES 'cascade model'. This links changes in ecosystem structure and function to changes in human well-being, while LCIA links the effect of changes on ecosystems due to human impacts (e.g. land use change, eutrophication, freshwater depletion) to the increase or decrease in the quality and/or quantity of supplied ES. The proposed cascade modelling framework complements traditional LCIA with information about the externalities associated with the supply and demand of ES, for which the overall cost-benefit result might be either negative (i.e. detrimental impact on the ES provision) or positive (i.e. increase of ES provision). In so doing, the framework introduces into traditional LCIA the notion of "benefit" (in the form of ES supply flows and ecosystems' capacity to generate services) which balances the quantified environmental intervention flows and related impacts (in the form of ES demands) that are typically considered in LCA. Recommendations are eventually provided to further address current gaps in the analysis of ES within the LCA methodology.

2.
Sci Total Environ ; 643: 1337-1347, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30189550

RESUMO

Ecosystem Services (ES) are the direct and indirect contributions of ecosystems to human well-being, which include provision of food and water, regulation of flood and erosion processes, soil formation and non-material benefits such as recreation. The integration of ES impact modeling in Life Cycle Assessment (LCA) still has limitations regarding the typology embodied and some conceptual errors in not actually evaluating the benefits provided by ES. In this context, soil is an important resource and provides a wide diversity of ES. Therefore, this article aims to: (i) Review the evolution of ES assessment in LCA and the current methods used to study the biophysical aspects of ES; (ii) Compare the ES cascade model and LCA environmental mechanism for land use impacts; and (iii) Improve and synthesize a new conceptual framework for soil-ES assessment in LCA studies. Results show that the cascade model provides a useful framework for operationalizing ES assessment and should integrate LCA. Thus, this study proposes a new conceptual framework for soil-ES including the main soil processes, functions, services, benefits and values. Each of these cascade model steps is aligned with LCA terminology in order to match the usual midpoint or endpoint levels of modeling. Future works should focus on new indicators to measure the supply of ES and their benefit to humans as well as indicators to their value.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA