Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Molecules ; 28(18)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37764211

RESUMO

Ladder polymers with poly(diketopyrrolopyrrole) (DPP) moieties have recently attracted enormous interest for a large variety of opto-electronic applications. Since the rigidity of the backbone increases with ladderization, a strong influence on the self-organization of thin films is expected. We study the molecular orientation of DPP-based ladder polymers in about 50 nm thin films using polarization modulation-infrared reflection-absorption spectroscopy (PM-IRRAS). Exemplarily, for one polymer, the orientation in thicker films is qualitatively investigated by infrared spectroscopy in transmission. Further, this method allows us to rule out the effects of a possible azimuthal ordering, which would affect the analysis of the orientation by PM-IRRAS. For all polymers, the long axis of the polymer backbone is preferentially oriented parallel to the substrate surface, pointing to a high degree of ordering. It is suggested that the choice of the side chains might be a promising way to tune for face-on and edge-on orientations. The exemplarily performed investigation of interface properties on substrates with different work functions suggests that the choice of the side chains has a minor effect on the interfacial electronic interface structure.

2.
Molecules ; 28(9)2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37175268

RESUMO

Side chains play an important role in the photo-oxidation process of low band gap (LBG) polymers. For example, it has been shown that their photostability can be increased by the introduction of aromatic-oxy-alkyl links. We studied the photostability of prototypical LBG polymers with alkyl and oxyalkyl side chains during irradiation with white light (AM 1.5 conditions) in dry air using UV/vis and IR spectroscopy. Though its degradation kinetics were distinctly affected by the presence or absence of oxygen in the structure of the side chains, in particular cases, the stability was more affected by the presence of linear or branched side chains. Moreover, we showed that the exact position of the alkyl/oxyalkyl side chain at the polymer backbone could be crucial. Although minor effects of chemical modifications on the electronic parameters (ionization potential and gap) were observed, the molecular orientation, determined by polarization modulation-infrared reflection-absorption spectroscopy (PMIRRAS), could be affected. The aggregation and crystallinity of these polymers may distinctly affect their stability.

3.
Chemistry ; 28(64): e202202036, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-35925842

RESUMO

Single-molecule assays often require functionalized surfaces. One approach for microtubule assays renders surfaces hydrophobic and uses amphiphilic blocking agents. However, the optimal hydrophobicity is unclear, protocols take long, produce toxic waste, and are susceptible to failure. Our method uses plasma activation with hydrocarbons for hexamethyldisilazane (HMDS) silanization in the gas phase. We measured the surface hydrophobicity, its effect on how well microtubule filaments were bound to the surface, and the number of nonspecific interactions with kinesin motor proteins. Additionally, we tested and discuss the use of different silanes and activation methods. We found that even weakly hydrophobic surfaces were optimal. Our environmentally friendly method significanty reduced the overall preparation effort and resulted in reproducible, high-quality surfaces with low variability. We expect the method to be applicable to a wide range of other single-molecule assays.


Assuntos
Cinesinas , Microscopia , Microtúbulos/química , Citoesqueleto , Interações Hidrofóbicas e Hidrofílicas
4.
Phys Chem Chem Phys ; 24(18): 10944-10951, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35466339

RESUMO

We show that the decomposition of caesium lead halide perovskite nanocrystals under continuous X-ray illumination depends on the surface ligand. For oleic acid/oleylamine, we observe a fast decay accompanied by the formation of elemental lead and halogen. Upon surface functionalization with a metal porphyrin derivative, the decay is markedly slower and involves the disproportionation of lead to Pb0 and Pb3+. In both cases, the decomposition is preceded by a contraction of the atomic lattice, which appears to initiate the decay. We find that the metal porphyrin derivative induces a strong surface dipole on the nanocrystals, which we hold responsible for the altered and slower decomposition pathway. These results are important for application of lead halide perovskite nanocrystals in X-ray scintillators.

5.
J Chem Phys ; 156(3): 034702, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35065565

RESUMO

Confocal optical microscopy and tip-enhanced optical microscopy are applied to characterize the defect distributions in chemical vapor deposition-grown WS2 monolayer triangles qualitatively and quantitatively. The presence of defects in individual monolayer WS2 triangles is revealed with diffraction-limited spatial resolution in their photoluminescence (PL) images, from which the inhomogeneous defect density distribution is calculated, showing an inverse relationship to the PL intensity. The defect-related surface-enhanced Raman spectroscopy (SERS) effect is investigated by depositing a thin copper phthalocyanine layer (5 nm) as the probe molecule on the monolayer WS2 triangles surface. Higher SERS enhancement effects are observed at the defect-rich areas. Furthermore, tip-enhanced optical measurements are performed, which can reveal morphologically defected areas invisible in the confocal optical measurements. Furthermore, the area with high defect density appears brighter than the low-defected area in the tip-enhanced optical measurements, which are different from the observation in the confocal optical measurements. The underlying reasons are attributed to the near-field enhancement of the defect exciton emission induced by the optically excited tip and to an improved coupling efficiency between the tip-generated near-field with the altered dipole moment orientation at the local defect.

6.
Langmuir ; 37(36): 10750-10761, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34464137

RESUMO

Organic bilayer systems and heterostructures are of enormous importance for optoelectronic devices. We study interface properties and the structural ordering of cobalt phthalocyanine (CoPc) on a highly ordered monolayer hexa-peri-hexabenzocoronene (HBC), grown on Au(111), using photoemission, X-ray absorption, scanning tunneling microscopy, and low-energy electron diffraction. A charge transfer between CoPc and the gold substrate is almost completely prevented by the HBC intermediate layer. We show that HBC acts as a template for the initial growth of CoPc molecules. After annealing to 630 K, a molecular exchange takes place, resulting in a coexistence of domains of both CoPc and HBC molecules on the surface.

7.
Phys Chem Chem Phys ; 23(23): 13370-13380, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34105557

RESUMO

Interface properties of chloroaluminum(iii) phthalocyanine (AlClPc) on two different rutile titanium dioxide (TiO2) single crystal surfaces ((100) and (001)) have been studied using X-ray and ultraviolet photoemission spectroscopy (XPS and UPS). It is shown that the strength of the interaction clearly depends on the substrate termination and preparation. Generally, the (001) surface is more reactive compared to the (100) surface. The most important interaction channel involves the nitrogen atoms of the phthalocyanine macrocycle. An exposure to oxygen during the annealing steps of the preparation procedure allows diminishing the extent of interaction of nitrogen with titanium dioxide. The work function of AlClPc/TiO2 is rather independent of the substrate, indicating a pinning regime at all interfaces, where the HOMO of the molecule is aligned at the maximum of the defect states of the substrate.

8.
Molecules ; 24(24)2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31847299

RESUMO

Interface properties of iron phthalocyanine (FePc) and perfluorinated iron phthalocyanine (FePcF16) on rutile TiO2(100) and TiO2(110) surfaces were studied using X-ray photoemission spectroscopy (XPS), X-ray absorption spectroscopy (XAS), and low-energy electron diffraction (LEED). It is demonstrated that the interaction strength at the interfaces is considerably affected by the detailed preparation procedure. Weak interactions were observed for all studied interfaces between FePc or FePcF16 and rutile, as long as the substrate was exposed to oxygen during the annealing steps of the preparation procedure. The absence of oxygen in the last annealing step only had almost no influence on interface properties. In contrast, repeated substrate cleaning cycles performed in the absence of oxygen resulted in a more reactive, defect-rich substrate surface. On such reactive surfaces, stronger interactions were observed, including the cleavage of some C-F bonds of FePcF16.


Assuntos
Compostos Ferrosos/química , Indóis/química , Titânio/química , Halogenação , Estrutura Molecular , Espectroscopia Fotoeletrônica , Propriedades de Superfície
9.
Chemphyschem ; 16(2): 428-35, 2015 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-25384350

RESUMO

The kinetics of photodegradation and the reactivity of different sites of the low-band-gap polymers poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b:3,4-b']dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (C-PCPDTBT) and poly[2,6-(4,4-bis-(2-ethylhexyl)dithieno[3,2-b:2',3'-d]silole)-alt-4,7-(2,1,3-benzothiadiazole)] (Si-PCPDTBT) are investigated as thin films and are compared to those of poly(3-hexylthiophene) (P3HT). The decay kinetics are monitored with UV/Vis spectroscopy and the reactivity and product evolution are investigated with X-ray photoelectron spectroscopy (XPS). Both polymers exhibit higher stability than P3HT. The bridging atom in the cyclopentadithiophene (CPDT) subunit has a significant influence on the stability. Varying oxidation rates for the different elements were observed. In the case of Si-PCPDTBT, the silicon atom is oxidized primarily, whereas the photooxidation rates of the other elements are reduced relative to C-PCPDTBT. Additionally, XPS experiments with varying excitation energies reveal a significant reaction gradient within a few nanometers of the surface of degraded thin films of C-PCPDTBT.

10.
J Chem Phys ; 142(10): 101918, 2015 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-25770507

RESUMO

The electronic structure of the interface between cobalt phthalocyanine (CoPc) and epitaxially grown manganese oxide (MnO) thin films is studied by means of photoemission (PES) and X-ray absorption spectroscopy (XAS). Our results reveal a flat-lying adsorption geometry of the molecules on the oxide surface which allows a maximal interaction between the π-system and the substrate. A charge transfer from MnO, in particular, to the central metal atom of CoPc is observed by both PES and XAS. The change of the shape of N-K XAS spectra at the interface points, however, to the involvement of the Pc macrocycle in the charge transfer process. As a consequence of the charge transfer, energetic shifts of MnO related core levels were observed, which are discussed in terms of a Fermi level shift in the semiconducting MnO films due to interface charge redistribution.

11.
Chem Commun (Camb) ; 60(64): 8451-8453, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39041191

RESUMO

Cycloreversion of diheptacenes, the covalently bound dimers of heptacene, in the solid state produces heptacene. In addition, diheptacendiyl diradical can be detected by ESR spectroscopy. The diradical has a small singlet-triplet energy gap of -0.02 kJ mol-1 (-4.8 × 10-3 kcal mol-1) in favor of the singlet state and is persistent in solid heptacene.

12.
J Phys Chem Lett ; 15(9): 2332-2336, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38386914

RESUMO

The ionization energy is a fundamental property that is relevant to charge transport in organic semiconductors. We report adiabatic ionization energies (AIEs) of heptacene at 6.21 and 7.20 eV for the X̃+B2g and Ã+Au states, respectively, as the next larger member of the acene series using mass- and isomer-selective double imaging photoelectron photoion coincidence spectroscopy. The X̃+ state energy decreases monotonically with an increase in size within the homologous series of acenes and approaches an asymptotic limit [AIE(polyacene) = 5.94 ± 0.06 eV] based on a fit with an exponential decay function. As byproducts of heptacene formation from cycloreversion of diheptacenes, 5,18-, 7,16-, and 6,17-dihydroheptacene can be detected, and their AIE is similar to that of their largest acene subunit (anthracene and tetracene, respectively), in very good agreement with computational treatments.

13.
Nanoscale Adv ; 6(4): 1213-1217, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38356631

RESUMO

The high sensitivity and molecular fingerprint capability of Surface-Enhanced Raman Spectroscopy (SERS) have lead to a wide variety of applications ranging from classical physics, chemistry over biology to medicine. Equally, there are numerous methods to fabricate samples owing to the desired properties and to create the localized surface plasmon resonances (LSPRS). However, for many applications the LSPRs must be specifically localized on micrometer sized areas and multiple steps of lithography are needed to achieve the desired substrates. Here we present a fast and reliable direct laser induced writing (DIW) method to produce SERS substrates with active areas of interest in any desired size and shape in the micrometer regime. Afterwards, the SERS substrates have been functionalized with phthalocyanines. The DIW fabricated samples realize sub-monolayer sensitivity and an almost uniform enhancement over the entire area, which make this production method suitable for many sensing applications.

14.
Anal Bioanal Chem ; 405(14): 4895-904, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23494276

RESUMO

The chemical transformation of the polar chloroaluminum phthalocyanine, AlClPc, to µ-(oxo)bis(phthalocyaninato)aluminum(III), (PcAl)2O, in thin films on indium tin oxide is studied and its influence on the molecular orientation is discussed. The studies were conducted using complementary spectroscopic techniques: Raman spectroscopy, X-ray photoelectron spectroscopy, and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. In addition, density functional theory calculations were performed in order to identify specific vibrations and to monitor the product formation. The thin films of AlClPc were annealed in controlled environmental conditions to obtain (PcAl)2O. It is shown that the chemical transformation in the thin films can proceed only in the presence of water. The influence of the reaction and the annealing on the molecular orientation was studied with Raman spectroscopy and NEXAFS spectroscopy in total electron yield and partial electron yield modes. The comparison of the results obtained from these techniques allows the determination of the molecular orientation of the film as a function of the probing depth.

15.
J Chem Phys ; 139(20): 204710, 2013 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-24289372

RESUMO

The µ-(oxo)bis[tetra-tert-butylphthalocyaninato] aluminum(III) [(tBu)4PcAl]2O films with the crystallites oriented preferably in one direction were obtained via chemical transformation of tetra-tert-butylsubstituted chloroaluminum(III) phthalocyanine (tBu)4PcAlCl film upon its annealing in magnetic field. A comparative analysis of the influence of post-deposition annealing process without and under applied magnetic field of 1 T, on the orientation and morphology of (tBu)4PcAlCl and [(tBu)4PcAl]2O films, has been carried out by the methods of UV-vis, Infrared and Raman spectroscopies, XRD as well as atomic force microscopy. The formation of [(tBu)4PcAl]2O films with elongated crystallites having preferential orientation was observed upon heating of the films in magnetic field while annealing without magnetic field under the same conditions does not demonstrate any effect on the structure and morphology of these films. The reasons of the sensitivity of this reaction to the presence of such magnetic field is discussed and studied by electronic paramagnetic resonance spectroscopy.

16.
J Chem Phys ; 138(8): 081101, 2013 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-23464132

RESUMO

The influence of graphene interlayers on electronic interface properties of cobalt phthalocyanine on Ni(111) is studied using both photoemission and X-ray absorption spectroscopy. A charge transfer associated with a redistribution of the d-electrons at the Co-atom of the phthalocyanine occurs at the interface to Ni(111). Even a graphene buffer layer cannot prevent the charge transfer at the interface to Ni(111); however, the detailed electronic situation is different.

17.
ACS Appl Mater Interfaces ; 15(27): 32744-32752, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37367642

RESUMO

We introduce a new carbazole-based zwitterionic ligand (DCzGPC) synthesized via Yamaguchi esterification which enhances the efficiency of lead halide perovskite (LHP) nanocrystals (NCs) in light-emitting diodes (LED). A facile ligand exchange of the native ligand shell, monitored by nuclear magnetic resonance (NMR), ultraviolet-visible (UV-vis), and photoluminescence (PL) spectroscopy, enables more stable and efficient LHP NCs. The improved stability is demonstrated in solution and solid-state LEDs, where the NCs exhibit prolonged luminescence lifetimes and improved luminance, respectively. These results represent a promising strategy to enhance the stability of LHP NCs and to tune their optoelectronic properties for further application in LEDs or solar cells.

18.
Nanoscale ; 15(12): 5679-5688, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36861175

RESUMO

2D semiconducting transition metal dichalcogenides (TMDCs) are highly promising materials for future spin- and valleytronic applications and exhibit an ultrafast response to external (optical) stimuli which is essential for optoelectronics. Colloidal nanochemistry on the other hand is an emerging alternative for the synthesis of 2D TMDC nanosheet (NS) ensembles, allowing for the control of the reaction via tunable precursor and ligand chemistry. Up to now, wet-chemical colloidal syntheses yielded intertwined/agglomerated NSs with a large lateral size. Here, we show a synthesis method for 2D mono- and bilayer MoS2 nanoplatelets with a particularly small lateral size (NPLs, 7.4 nm ± 2.2 nm) and MoS2 NSs (22 nm ± 9 nm) as a reference by adjusting the molybdenum precursor concentration in the reaction. We find that in colloidal 2D MoS2 syntheses initially a mixture of the stable semiconducting and the metastable metallic crystal phase is formed. 2D MoS2 NPLs and NSs then both undergo a full transformation to the semiconducting crystal phase by the end of the reaction, which we quantify by X-ray photoelectron spectroscopy. Phase pure semiconducting MoS2 NPLs with a lateral size approaching the MoS2 exciton Bohr radius exhibit strong additional lateral confinement, leading to a drastically shortened decay of the A and B exciton which is characterized by ultrafast transient absorption spectroscopy. Our findings represent an important step for utilizing colloidal TMDCs, for example small MoS2 NPLs represent an excellent starting point for the growth of heterostructures for future colloidal photonics.

19.
J Phys Condens Matter ; 35(47)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37586386

RESUMO

The adsorption of heptacene (7 A) on Cu(110) and Cu(110)-(2 × 1)-O was studied with scanning tunneling microscopy, photoemission orbital tomography and density functional calculations to reveal the influence of surface passivation on the molecular geometry and electronic states. We found that the charge transfer into the 7 A molecules on Cu(110) is completely suppressed for the oxygen-modified Cu surface. The molecules are aligned along the Cu-O rows and uncharged. They are tilted due to the geometry enforced by the substrate and the ability to maximize intermolecular π-π overlap, which leads to strong π-band dispersion. The HOMO-LUMO gap of these decoupled molecules is significantly larger than that reported on weakly interacting metal surfaces. Finally, the Cu-O stripe phase was used as a template for nanostructured molecular growth and to assess possible confinement effects.

20.
J Phys Chem C Nanomater Interfaces ; 126(10): 5036-5045, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35330758

RESUMO

Hexacene, composed of six linearly fused benzene rings, is an organic semiconductor material with superior electronic properties. The fundamental understanding of the electronic and chemical properties is prerequisite to any possible application in devices. We investigate the orientation and interface properties of highly ordered hexacene monolayers on Ag(110) and Cu(110) with X-ray photoemission spectroscopy (XPS), photoemission orbital tomography (POT), X-ray absorption spectroscopy (XAS), low-energy electron diffraction (LEED), scanning tunneling microscopy (STM), and density functional theory (DFT). We find pronounced differences in the structural arrangement of the molecules and the electronic properties at the metal/organic interfaces for the two substrates. While on Cu(110) the molecules adsorb with their long molecular axis parallel to the high symmetry substrate direction, on Ag(110), hexacene adsorbs in an azimuthally slightly rotated geometry with respect to the metal rows of the substrate. In both cases, molecular planes are oriented parallel to the substrate. A pronounced charge transfer from both substrates to different molecular states affects the effective charge of different C atoms of the molecule. Through analysis of experimental and theoretical data, we found out that on Ag(110) the LUMO of the molecule is occupied through charge transfer from the metal, whereas on Cu(110) even the LUMO+1 receives a charge. Interface dipoles are determined to a large extent by the push-back effect, which are also found to differ significantly between 6A/Ag(110) and 6A/Cu(110).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA