Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Brief Bioinform ; 23(6)2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36151714

RESUMO

The three-dimensional genome structure plays a key role in cellular function and gene regulation. Single-cell Hi-C (high-resolution chromosome conformation capture) technology can capture genome structure information at the cell level, which provides the opportunity to study how genome structure varies among different cell types. Recently, a few methods are well designed for single-cell Hi-C clustering. In this manuscript, we perform an in-depth benchmark study of available single-cell Hi-C data clustering methods to implement an evaluation system for multiple clustering frameworks based on both human and mouse datasets. We compare eight methods in terms of visualization and clustering performance. Performance is evaluated using four benchmark metrics including adjusted rand index, normalized mutual information, homogeneity and Fowlkes-Mallows index. Furthermore, we also evaluate the eight methods for the task of separating cells at different stages of the cell cycle based on single-cell Hi-C data.


Assuntos
Cromatina , Cromossomos , Humanos , Camundongos , Animais , Análise por Conglomerados , Genoma , Conformação Molecular
2.
Plant Physiol ; 186(4): 1786-1799, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34618108

RESUMO

The proper biogenesis, morphogenesis, and dynamics of subcellular organelles are essential to their metabolic functions. Conventional techniques for identifying, classifying, and quantifying abnormalities in organelle morphology are largely manual and time-consuming, and require specific expertise. Deep learning has the potential to revolutionize image-based screens by greatly improving their scope, speed, and efficiency. Here, we used transfer learning and a convolutional neural network (CNN) to analyze over 47,000 confocal microscopy images from Arabidopsis wild-type and mutant plants with abnormal division of one of three essential energy organelles: chloroplasts, mitochondria, or peroxisomes. We have built a deep-learning framework, DeepLearnMOR (Deep Learning of the Morphology of Organelles), which can rapidly classify image categories and identify abnormalities in organelle morphology with over 97% accuracy. Feature visualization analysis identified important features used by the CNN to predict morphological abnormalities, and visual clues helped to better understand the decision-making process, thereby validating the reliability and interpretability of the neural network. This framework establishes a foundation for future larger-scale research with broader scopes and greater data set diversity and heterogeneity.


Assuntos
Desenho Assistido por Computador , Aprendizado Profundo , Redes Neurais de Computação , Plantas/anatomia & histologia , Fluorescência , Organelas , Células Vegetais , Reprodutibilidade dos Testes
3.
Fundam Res ; 4(4): 752-760, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39156563

RESUMO

The potential for being able to identify individuals at high disease risk solely based on genotype data has garnered significant interest. Although widely applied, traditional polygenic risk scoring methods fall short, as they are built on additive models that fail to capture the intricate associations among single nucleotide polymorphisms (SNPs). This presents a limitation, as genetic diseases often arise from complex interactions between multiple SNPs. To address this challenge, we developed DeepRisk, a biological knowledge-driven deep learning method for modeling these complex, nonlinear associations among SNPs, to provide a more effective method for scoring the risk of common diseases with genome-wide genotype data. Evaluations demonstrated that DeepRisk outperforms existing PRS-based methods in identifying individuals at high risk for four common diseases: Alzheimer's disease, inflammatory bowel disease, type 2 diabetes, and breast cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA