Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Integr Plant Biol ; 65(11): 2505-2518, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37675654

RESUMO

Specialized plant metabolism is a rich resource of compounds for drug discovery. The acylated flavonoid glycoside melitidin is being developed as an anti-cholesterol statin drug candidate, but its biosynthetic route in plants has not yet been fully characterized. Here, we describe the gene discovery and functional characterization of a new flavonoid gene cluster (UDP-glucuronosyltransferases (CgUGTs), 1,2 rhamnosyltransferase (Cg1,2RhaT), acyltransferases (CgATs)) that is responsible for melitidin biosynthesis in pummelo (Citrus grandis (L.) Osbeck). Population variation analysis indicated that the tailoring of acyltransferases, specific for bitter substrates, mainly determine the natural abundance of melitidin. Moreover, 3-hydroxy-3-methylglutaryl-CoA reductase enzyme inhibition assays showed that the product from this metabolic gene cluster, melitidin, may be an effective anti-cholesterol statin drug candidate. Co-expression of these clustered genes in Nicotiana benthamiana resulted in the formation of melitidin, demonstrating the potential for metabolic engineering of melitidin in a heterologous plant system. This study establishes a biosynthetic pathway for melitidin, which provides genetic resources for the breeding and genetic improvement of pummelo aimed at fortifying the content of biologically active metabolites.


Assuntos
Citrus , Inibidores de Hidroximetilglutaril-CoA Redutases , Vias Biossintéticas/genética , Melhoramento Vegetal , Flavonoides/metabolismo , Citrus/genética , Aciltransferases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA