Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 133(2): 023602, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39073927

RESUMO

We report the detection of individual nuclear α decays through the mechanical recoil of the entire micron-sized particle in which the decaying nuclei are embedded. Momentum conservation ensures that such measurements are sensitive to any particles emitted in the decay, including neutral particles that may otherwise evade detection with existing techniques. Detection of the minuscule recoil of an object more than 10^{12} times more massive than the emitted particles is made possible by recently developed techniques in levitated optomechanics, which enable high-precision optical control and measurement of the mechanical motion of optically trapped particles. Observation of a change in the net charge of the particle coincident with the recoil allows decays to be identified with background levels at the micro-Becquerel level. The techniques developed here may find use in fields ranging from nuclear forensics to dark matter and neutrino physics.

2.
Rev Sci Instrum ; 93(7): 075109, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35922321

RESUMO

Imaging-based detection of the motion of levitated nanoparticles complements a widely used interferometric detection method, providing a precise and robust way to estimate the position of the particle. Here, we demonstrate a camera-based feedback cooling scheme for a charged nanoparticle levitated in a linear Paul trap. The nanoparticle levitated in vacuum was imaged using a complementary metal-oxide semiconductor (CMOS) camera system. The images were processed in real-time with a microcontroller integrated with a CMOS image sensor. The phase-delayed position signal was fed back to one of the trap electrodes, resulting in cooling by velocity damping. Our study provides a simple and versatile approach applicable for the control of low-frequency mechanical oscillators.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA