Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 56(23): 16676-16685, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36441558

RESUMO

Airborne microplastics (AMPs) have been reported in indoor and outdoor air in high-income countries and are expected to be a significant contributor to daily microplastic (MP) exposure for human beings. To date, there are only a handful of studies in lower-middle-income countries. In this study, AMPs from 5000 to 50 µm were sampled across selected areas of Sri Lanka using an active sampling technique. Suspected AMPs were further characterized using Fourier transform infrared spectroscopy. MP concentrations were higher indoors compared to outdoor air (0.13-0.93, compared to 0.00-0.23 particles/m3, respectively). The types of indoor MPs were related to indoor-generating sources, and the occupant's lifestyles. The highest outdoor MP abundance was found near an industrial zone, followed by urban and inland locations in high-density areas. The dominant size range of MPs was 100-300 µm, and the only shapes observed indoors and outdoors were fibers (98%) and fragments. Polyethylene terephthalate was the most prominent MP type, followed by polyester, indicating that textile fibers could be the major source of these AMPs. This study provides the first report on AMPs in Sri Lanka. Considering population growth and industrialization, further research should evaluate possible trends and health risks upon inhalation.


Assuntos
Poluentes Atmosféricos , Poluentes Químicos da Água , Humanos , Microplásticos , Plásticos/análise , Poluentes Atmosféricos/análise , Países em Desenvolvimento , Sri Lanka , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise
2.
Environ Pollut ; 346: 123673, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38423270

RESUMO

Airborne microplastics (AMPs) have been identified in both indoor and outdoor environments and account for a large portion of an individual's daily exposure to microplastics. Thus, it is crucial to find effective methods to capture and control the levels of AMPs and ultimately reduce human exposure. While terrestrial plants have been recognized for their effectiveness in capturing airborne particles, little is known about their ability to capture AMPs. This study investigated the ability of 8 natural plant species and 2 artificial plants to capture AMPs, as well as the influence of leaf morphology on this retention. Plant leaves were exposed to AMPs for two weeks, and deposited AMPs were characterized using a Micro-Fourier Transform Infrared (µ-FTIR)spectroscopy. Selected cleaned leaves were further digested, and the presence of subsurface AMPs was confirmed using µ-Raman spectroscopy. Results revealed that AMPs were retained on the leaves of all selected plant species at concentrations ranging from 0.02 to 0.87 n/cm2. The highest average concentration was observed on an artificial plant with fenestrated leaves, followed by natural plant species with trichomes and leaflets. The lowest concentration was observed on a natural plant with smooth leaves. The majority (90%) of retained AMPs were fibres, and the remaining were fragments. Polyethylene terephthalate (PET) was the prominent polymer type. Additionally, AMP fragments were observed in the leaf subsurface in one selected species, likely retained within the leaf cuticles. The results suggest that plant leaves can indiscriminately retain AMPs on their surfaces and act as temporary sinks for AMPs. Additionally, indoor plants may provide a useful functional role in reducing indoor AMP concentrations, although longer-term studies are needed to ascertain their retention capacity more accurately over time and to evaluate the capability of indoor plants to act as a suitable, cost-effective candidate for reducing AMPs.


Assuntos
Poluentes Atmosféricos , Microplásticos , Humanos , Microplásticos/análise , Poluentes Atmosféricos/análise , Plásticos/análise , Monitoramento Ambiental/métodos , Folhas de Planta/química
3.
Materials (Basel) ; 17(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38612100

RESUMO

We demonstrate the growth of 3C-SiC with reduced planar defects on a micro-scale compliant substrate. Heteroepitaxial growth of 3C-SiC on trenches with a width and separation of 2 µm, etched into a Si(001) substrate, is found to suppress defect propagation through the epilayer. Stacking faults and other planar defects are channeled away from the center of the patterned structures, which are rounded through the use of H2 annealing at 1100 °C. Void formation between the columns of 3C-SiC growth acts as a termination point for defects, and coalescence of these columns into a continuous epilayer is promoted through the addition of HCl in the growth phase. The process of fabricating these compliant substrates utilizes standard processing techniques found within the semiconductor industry and is independent of the substrate orientation and offcut.

4.
Sci Total Environ ; 889: 164292, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37211105

RESUMO

Studies on airborne microplastics (AMPs) have reported higher abundance of AMPs in indoor air compared to outdoors. Most people spend more time indoors compared to outdoors, and it is therefore important to identify and quantify AMPs in indoor air to understand human exposure to AMPs. This exposure can vary among different individuals as they spend their time in different locations and different activity levels, and thus experience different breathing rates. In this study, AMPs ranging from 20-5000 µm were sampled across different indoor sites of Southeast Queensland using an active sampling technique. The highest indoor MP concentration was observed at a childcare site (2.25 ± 0.38 particles/m3), followed by an office (1.20 ± 0.14 particles/m3) and a school (1.03 ± 0.40 particles/m3). The lowest indoor MP concentration was observed inside a vehicle (0.20 ± 0.14 particles/m3), comparable to outdoor concentrations. The only shapes observed were fibers (98%) and fragments. MP fibers ranged from 71 to 4950 µm in length. Polyethylene terephthalate was the prominent polymer type at most sites. Using our measured airborne concentrations as inhaled air concentrations, we calculated the annual human exposure levels to AMPs using scenario-specific activity levels. Males between the ages of 18 to 64 were calculated to have the highest AMP exposure at 3187 ± 594 particles/year, followed by males ≥65 years at 2978 ± 628 particles/year. The lowest exposure of 1928 ± 549 particles/year was calculated for females between the ages of 5 to 17. This study provides the first report on AMPs for various types of indoor locations where individuals spend most of their time. Considering acute, chronic, industrial, and individual susceptibility, more detailed human inhalation exposure levels to AMPs should be estimated for a realistic appraisal of the human health risk, including how much of the inhaled particles are exhaled. SYNOPSIS: Limited research exists on the occurrence and the associated human exposure levels to AMPs in indoor locations where people spend most of their time. This study reports on the occurrence of AMPs at indoor locations and associated exposure levels using scenario-specific activity levels.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Masculino , Feminino , Humanos , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Pré-Escolar , Criança , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Microplásticos , Plásticos/análise , Austrália , Monitoramento Ambiental/métodos
5.
Environ Pollut ; 319: 120984, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36587782

RESUMO

Microplastics come in a variety of shapes, polymer types and sizes. Due to the lack of a harmonised approach to analyse and quantify microplastics, there are huge disparities in size detection limits and size classifications used in the literature. This has caused large variations in reported microplastic data and has made comparing microplastic abundance between studies extremely challenging. Herein, we applied a simple mathematical approach that allows for a meaningful comparison between size and abundance (number of particles) of microplastics irrespective of the size classifications used. This method was validated using two separate datasets (microplastics in air and sediment) and applied to re-analyse 127 publications reporting microplastics in various environmental matrices. We demonstrate a strong negative linear relationship between microplastic concentrations and their sizes with comparable slopes across all matrices. Using this method, it is possible to compare the concentration of microplastics of various sizes between studies. It also allows estimation of the abundance of microplastics of a specific size where data are not available. This enables researchers to predict environmentally relevant concentrations of microplastics (particularly for smaller microplastics) and provide realistic exposure scenarios in future toxicity studies, which will greatly improve our understanding of the risks that microplastics pose to living organisms.


Assuntos
Microplásticos , Poluentes Químicos da Água , Microplásticos/análise , Plásticos/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Projetos de Pesquisa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA