RESUMO
Nonribosomal cyclic peptides (NRcPs) are structurally complex natural products and a vital pool of therapeutics, particularly antibiotics. Their structural diversity arises from the ability of the multidomain enzyme assembly lines, nonribosomal peptide synthetases (NRPSs), to utilize bespoke nonproteinogenic amino acids, modify the linear peptide during elongation, and catalyze an array of cyclization modes, e.g., head to tail, side chain to tail. The study and drug development of NRcPs are often limited by a lack of easy synthetic access to NRcPs and their analogues, with selective macrolactamization being a major bottleneck. Herein, we report a generally applicable chemical macrocyclization method of unprecedented speed and selectivity. Inspired by biosynthetic cyclization, it combines the deprotected linear biosynthetic precursor peptide sequence with a highly reactive C-terminus to produce NRcPs and analogues in minutes. The method was applied to several NRcPs of varying sequences, ring sizes, and cyclization modes including rufomycin, colistin, and gramicidin S with comparable success. We thus demonstrate that the linear order of modules in NRPS enzymes that determines peptide sequence encodes the key structural information to produce peptides conformationally biased toward macrocyclization. To fully exploit this conformational bias synthetically, a highly reactive C-terminal acyl azide is also required, alongside carefully balanced pH and solvent conditions. This allows for consistent, facile cyclization of exceptional speed, selectivity, and atom efficiency. This exciting macrolactamization method represents a new enabling technology for the biosynthetic study of NRcPs and their development as therapeutics.
RESUMO
Heme is best known for its role as a versatile prosthetic group in prokaryotic and eukaryotic proteins with diverse biological functions including gas and electron transport, as well as a wide array of redox chemistry. However, free heme and related tetrapyrroles also have important roles in the cell. In several bacterial strains, heme biosynthetic precursors and degradation products have been proposed to function as signaling molecules, ion chelators, antioxidants and photoprotectants. While the uptake and degradation of heme by bacterial pathogens is well studied, less is understood about the physiological role of these processes and their products in non-pathogenic bacteria. Streptomyces are slow growing soil bacteria known for their extraordinary capacity to produce complex secondary metabolites, particularly many clinically used antibiotics. Here we report the unambiguous identification of three tetrapyrrole metabolites from heme metabolism, coproporphyrin III, biliverdin and bilirubin, in culture extracts of the rufomycin antibiotic producing Streptomyces atratus DSM41673. We propose that biliverdin and bilirubin may combat oxidative stress induced by nitric oxide production during rufomycin biosynthesis, and indicate the genes involved in their production. This is, to our knowledge, the first report of the production of all three of these tetrapyrroles by a Streptomycete.
RESUMO
Methionine sulfoxide reductase A (MsrA) enzymes have recently found applications as nonoxidative biocatalysts in the enantioselective kinetic resolution of racemic sulfoxides. This work describes the identification of selective and robust MsrA biocatalysts able to catalyze the enantioselective reduction of a variety of aromatic and aliphatic chiral sulfoxides at 8-64 mM concentration with high yields and excellent ees (up to 99%). Moreover, with the aim to expand the substrate scope of MsrA biocatalysts, a library of mutant enzymes has been designed via rational mutagenesis utilizing in silico docking, molecular dynamics, and structural nuclear magnetic resonance (NMR) studies. The mutant enzyme MsrA33 was found to catalyze the kinetic resolution of bulky sulfoxide substrates bearing non-methyl substituents on the sulfur atom with ees up to 99%, overcoming a significant limitation of the currently available MsrA biocatalysts.
RESUMO
The discovery of new enzymes, alongside the push to make chemical processes more sustainable, has resulted in increased industrial interest in the use of biocatalytic processes to produce high-value and chiral precursor chemicals. Huge strides in protein engineering methodology and in silico tools have facilitated significant progress in the discovery and production of enzymes for biocatalytic processes. However, there are significant gaps in our knowledge of the relationship between enzyme structure and function. This has demonstrated the need for improved computational methods to model mechanisms and understand structure dynamics. Here, we explore efforts to rationally modify enzymes toward changing aspects of their catalyzed chemistry. We highlight examples of enzymes where links between enzyme function and structure have been made, thus enabling rational changes to the enzyme structure to give predictable chemical outcomes. We look at future directions the field could take and the technologies that will enable it.
RESUMO
The antimycobacterial peptides, rufomycins, have their antibiotic activity conferred by oxidative tailoring of the cyclic peptide. Here we elucidate the roles of cytochrome P450s RufS and RufM in regioselective epoxidation and alkyl oxidation respectively and demonstrate how RufM and RufS create a complex product profile dependent on redox partner availability. Finally, we report the in vitro one pot conversion of rufomycin B to rufomycin C.
Assuntos
Antituberculosos/síntese química , Peptídeos Cíclicos/síntese química , Sequência de Aminoácidos , Antituberculosos/metabolismo , Proteínas de Bactérias/química , Sistema Enzimático do Citocromo P-450/química , Oxirredução , Peptídeos Cíclicos/biossíntese , Streptomyces/químicaRESUMO
The aim of this study was to evaluate the amount and quality of water in the Magdalena-Eslava river system and to propose alternatives for sustainable water use. The system is the last urban river in the vicinity of Mexico City that supplies surface water to the urban area. Historical flow data were analyzed (1973-2010), along with the physicochemical and bacteriological attributes, documenting the evolution of these variables over the course of five years (2008-2012) in both dry and rainy seasons. The analyses show that the flow regime has been significantly altered. The physicochemical variables show significant differences between the natural area, where the river originates, and the urban area, where the river receives untreated wastewater. Nutrient and conductivity concentrations in the river were equivalent to domestic wastewater. Fecal pollution indicators and various pathogens were present in elevated densities, demonstrating a threat to the population living near the river. Estimates of the value of the water lost as a result of mixing clean and contaminated water are presented. This urban river should be rehabilitated as a sustainability practice, and if possible, these efforts should be replicated in other areas. Because of the public health issues and in view of the population exposure where the river flows through the city, the river should be improved aesthetically and should be treated to allow its ecosystem services to recover. This river represents an iconic case for Mexico City because it connects the natural and urban areas in a socio-ecological system that can potentially provide clean water for human consumption. Contaminated water could be treated and reused for irrigation in one of the green areas of the city. Wastewater treatment plants and the operation of the existing purification plants are urgent priorities that could lead to better, more sustainable water use practices in Mexico City.
Assuntos
Conservação dos Recursos Naturais/métodos , Monitoramento Ambiental/métodos , Rios/química , Abastecimento de Água/análise , Ecossistema , Geografia , Humanos , México , Chuva , Rios/microbiologia , Águas Residuárias/análise , Águas Residuárias/química , Microbiologia da Água , Movimentos da Água , Poluentes Químicos da Água/análiseRESUMO
Several studies have identified nearly 40 different type 2 diabetes susceptibility loci, mainly in European populations, but few of them have been evaluated in the Mexican population. The aim of this study was to examine the extent to which 24 common genetic variants previously associated with type 2 diabetes are associated in Mexican Mestizos. Twenty-four single nucleotide polymorphisms (SNPs) in or near genes (KCNJ11, PPARG, TCF7L2, SLC30A8, HHEX, CDKN2A/2B, CDKAL1, IGF2BP2, ARHGEF11, JAZF1, CDC123/CAMK1D, FTO, TSPAN8/LGR5, KCNQ1, THADA, ADAMTS9, NOTCH2, NXPH1, RORA, UBQLNL, and RALGPS2) were genotyped in Mexican Mestizos. A case-control association study comprising 1,027 type 2 diabetic individuals and 990 control individuals was conducted. To account for population stratification, a panel of 104 ancestry-informative markers was analyzed. Association to type 2 diabetes was found for rs13266634 (SLC30A8), rs7923837 (HHEX), rs10811661 (CDKN2A/2B), rs4402960 (IGF2BP2), rs12779790 (CDC123/CAMK1D), and rs2237892 (KCNQ1). In addition, rs7754840 (CDKAL1) was associated in the nonobese type 2 diabetic subgroup, and for rs7903146 (TCF7L2), association was observed for early-onset type 2 diabetes. Lack of association for the rest of the variants may have resulted from insufficient power to detect smaller allele effects.