Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(4)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36835033

RESUMO

3-3'-Diindolylmethane (DIM) is a biologically active dimer derived from the endogenous conversion of indole-3-carbinol (I3C), a naturally occurring glucosinolate found in many cruciferous vegetables (i.e., Brassicaceae). DIM was the first pure androgen receptor antagonist isolated from the Brassicaceae family and has been recently investigated for its potential pharmacological use in prostate cancer prevention and treatment. Interestingly, there is evidence that DIM can also interact with cannabinoid receptors. In this context, by considering the well-known involvement of the endocannabinoid system in prostate cancer, we have pharmacologically characterized the properties of DIM on both CB1 and CB2 cannabinoid receptors in two human prostate cancer cell lines: PC3 (androgen-independent/androgen receptor negative) and LNCaP (androgen-dependent). In the PC3 cell line, DIM was able to activate CB2 receptors and potentially associated apoptotic pathways. On the other hand, although DIM was also able to activate CB2 receptors in the LNCaP cell line, no apoptotic effects were observed. Our evidence confirms that DIM is a CB2 receptor ligand and, moreover, it has a potential anti-proliferative effect on androgen-independent/androgen receptor-negative prostate cancer cells.


Assuntos
Brassicaceae , Neoplasias da Próstata , Receptor CB2 de Canabinoide , Humanos , Masculino , Androgênios/metabolismo , Brassicaceae/química , Linhagem Celular , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/metabolismo , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/química
2.
Int J Mol Sci ; 24(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36674826

RESUMO

In this study, we have investigated a possible mechanism that enables CB1/M3 receptor cross-talk, using SH-SY5Y cells as a model system. Our results show that M3 receptor activation initiates signaling that rapidly upregulates the CNR1 gene, resulting in a greatly potentiated CB1 receptor response to agonists. Calcium homeostasis plays an essential intermediary role in this functional CB1/M3 receptor cross-talk. We show that M3 receptor-triggered calcium release greatly increases CB1 receptor expression via both transcriptional and translational activity, by enhancing CNR1 promoter activity. The co-expression of M3 and CB1 receptors in brain areas such as the nucleus accumbens and amygdala support the hypothesis that the altered synaptic plasticity observed after exposure to cannabinoids involves cross-talk with the M3 receptor subtype. In this context, M3 receptors and their interaction with the cannabinoid system at the transcriptional level represent a potential pharmacogenomic target not only for the develop of new drugs for addressing addiction and tolerance. but also to understand the mechanisms underpinning response stratification to cannabinoids.


Assuntos
Canabinoides , Neuroblastoma , Humanos , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Cálcio/metabolismo , Canabinoides/farmacologia , Canabinoides/metabolismo , Sinalização do Cálcio
3.
Molecules ; 27(9)2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35566369

RESUMO

1,8-naphthyridine-3-carboxamide structures were previously identified as a promising scaffold from which to obtain CB2R agonists with anticancer and anti-inflammatory activity. This work describes the synthesis and functional characterization of new 1,8-naphthyridin-2(1H)-one-3-carboxamides with high affinity and selectivity for CB2R. The new compounds were able to pharmacologically modulate the cAMP response without modulating CB2R-dependent ß-arrestin2 recruitment. These structures were also evaluated for their anti-cancer activity against SH-SY5Y and SK-N-BE cells. They were able to reduce the cell viability of both neuroblastoma cancer cell lines with micromolar potency (IC50 of FG158a = 11.8 µM and FG160a = 13.2 µM in SH-SY5Y cells) by a CB2R-mediated mechanism. Finally, in SH-SY5Y cells one of the newly synthesized compounds, FG158a, was able to modulate ERK1/2 expression by a CB2R-mediated effect, thus suggesting that this signaling pathway might be involved in its potential anti-cancer effect.


Assuntos
Canabinoides , Neuroblastoma , Agonistas de Receptores de Canabinoides/química , Sobrevivência Celular , Humanos , Neuroblastoma/tratamento farmacológico , Receptor CB1 de Canabinoide , Receptor CB2 de Canabinoide
4.
Bioorg Med Chem ; 50: 116421, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34634617

RESUMO

Allosteric modulators of cannabinoid 1 receptor (CB1R) show translational promise over orthosteric ligands due to their potential to elicit therapeutic benefit without cannabimimetic side effects. The prototypic 2-phenylindole CB1R allosteric modulator, GAT211 (1), demonstrates preclinical efficacy in various disease models. The limited systematic structure-activity relationship (SAR) data at the C2 position of the indole ring within GAT211 invites the opportunity for further modifications to improve GAT211's pharmacological profile while serving to amplify and variegate this library of therapeutically attractive agents. These considerations prompted this focused SAR study in which we substituted the GAT211 C2-phenyl ring with heteroaromatic substituents. The synthesized GAT211 analogs were then evaluated in vitro as CB1R allosteric modulators in cAMP and ß-arrestin2 assays with CP55,940 as the orthosteric ligand. Furan and thiophene rings (15c-f and 15m) were the best-tolerated substituents at the C2 position of GAT211 for engagement with human CB1R (hCB1R). The SAR around the novel ligands reported allowed direct experimental characterization of the interaction profile of that pharmacophore with its binding domain in functional, human CB1R, thus offering guidance for accessing subsequent-generation hCB1R allosteric modulators as potential therapeutics. The most potent analog, 15d, markedly promoted orthosteric ligand binding to hCB1R. Pharmacological profiling in the GTPγS and mouse vas deferens assays demonstrated that 15d behaves as a CB1R agonist-positive allosteric modulator (ago-PAM), as confirmed electrophysiologically in autoptic neurons. In vivo, 15d was efficacious as a topical agent that significantly reduced intraocular pressure (IOP) in the ocular normotensive murine model of glaucoma. Since elevated IOP is a decisive risk factor for glaucoma and attendant vision loss, our data support the proposition that the 2-phenylindole class of CB1R ago-PAMs has therapeutic potential for glaucoma and other diseases where potentiation of CB1R signaling may be therapeutic.


Assuntos
Agonistas de Receptores de Canabinoides/farmacologia , Desenho de Fármacos , Indóis/farmacologia , Receptor CB1 de Canabinoide/agonistas , Regulação Alostérica/efeitos dos fármacos , Agonistas de Receptores de Canabinoides/síntese química , Agonistas de Receptores de Canabinoides/química , Relação Dose-Resposta a Droga , Humanos , Indóis/síntese química , Indóis/química , Pressão Intraocular/efeitos dos fármacos , Estrutura Molecular , Receptor CB1 de Canabinoide/metabolismo , Relação Estrutura-Atividade
5.
Hum Mutat ; 41(1): 291-298, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31608546

RESUMO

Cannabinoid receptor-1 (CB1) represents a potential drug target against conditions that include obesity and substance abuse. However, drug trials targeting CB1 (encoded by the CNR1 gene) have been compromised by differences in patient response. Toward addressing the hypothesis that genetic changes within the regulatory regions controlling CNR1 expression contribute to these differences, we characterized the effects of disease-associated allelic variation within a conserved regulatory sequence (ECR1) in CNR1 intron 2 that had previously been shown to modulate cannabinoid response, alcohol intake, and anxiety-like behavior. We used primary cell analysis of reporters carrying different allelic variants of the human ECR1 and found that human-specific C-allele variants of ECR1 (ECR1(C)) drove higher levels of CNR1prom activity in primary hippocampal cells than did the ancestral T-allele and demonstrated a differential response to CB1 agonism. We further demonstrate a role for the AP-1 transcription factor in driving higher ECR1(C) activity and evidence that the ancestral t-allele variant of ECR1 interacted with higher affinity with the insulator binding factor CTCF. The cell-specific approaches used in our study represent an important step in gaining a mechanistic understanding of the roles of noncoding polymorphic variation in disease and in the increasingly important field of cannabinoid pharmacogenetics.


Assuntos
Canabinoides/farmacologia , Sequência Conservada , Elementos Facilitadores Genéticos , Farmacogenética , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Receptor CB1 de Canabinoide/genética , Células Cultivadas , Biologia Computacional/métodos , Suscetibilidade a Doenças , Regulação da Expressão Gênica , Genes Reporter , Genes fos , Humanos , Especificidade de Órgãos/genética , Farmacogenética/métodos
6.
Bioorg Med Chem ; 28(11): 115513, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32340793

RESUMO

Focusing on the importance of the free phenolic hydroxyl moiety, a family of 23 alkylresorcinol-based compounds were developed and evaluated for their cannabinoid receptor binding properties. The non-symmetrical hexylresorcinol derivative 29 turned out to be a CB2-selective competitive antagonist/inverse agonist endowed with good potency. Both the olivetol- and 5-(2-methyloctan-2-yl)resorcinol-based derivatives 23 and 24 exhibited a significant antinociceptive activity. Interestingly, compound 24 proved to be able to activate both cannabinoid and TRPV1 receptors. Even if cannabinoid receptor subtype selectivity remained a goal only partially achieved, results confirm the validity of the alkylresorcinol nucleus as skeleton for the identification of potent cannabinoid receptor modulators.


Assuntos
Amidas/farmacologia , Analgésicos/farmacologia , Receptores de Canabinoides/metabolismo , Resorcinóis/farmacologia , Amidas/síntese química , Amidas/química , Analgésicos/síntese química , Analgésicos/química , Animais , Linhagem Celular , Relação Dose-Resposta a Droga , Humanos , Masculino , Camundongos , Estrutura Molecular , Ratos , Resorcinóis/química , Relação Estrutura-Atividade , Canais de Cátion TRPV/metabolismo
7.
Proc Natl Acad Sci U S A ; 112(28): 8774-9, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26124120

RESUMO

Activation of the CB2 receptor is apparently an endogenous protective mechanism. Thus, it restrains inflammation and protects the skeleton against age-related bone loss. However, the endogenous cannabinoids, as well as Δ(9)-tetrahydrocannabinol, the main plant psychoactive constituent, activate both cannabinoid receptors, CB1 and CB2. HU-308 was among the first synthetic, selective CB2 agonists. HU-308 is antiosteoporotic and antiinflammatory. Here we show that the HU-308 enantiomer, designated HU-433, is 3-4 orders of magnitude more potent in osteoblast proliferation and osteoclast differentiation culture systems, as well as in mouse models, for the rescue of ovariectomy-induced bone loss and ear inflammation. HU-433 retains the HU-308 specificity for CB2, as shown by its failure to bind to the CB1 cannabinoid receptor, and has no activity in CB2-deficient cells and animals. Surprisingly, the CB2 binding affinity of HU-433 in terms of [(3)H]CP55,940 displacement and its effect on [(35)S]GTPγS accumulation is substantially lower compared with HU-308. A molecular-modeling analysis suggests that HU-433 and -308 have two different binding conformations within CB2, with one of them possibly responsible for the affinity difference, involving [(35)S]GTPγS and cAMP synthesis. Hence, different ligands may have different orientations relative to the same binding site. This situation questions the usefulness of universal radioligands for comparative binding studies. Moreover, orientation-targeted ligands have promising potential for the pharmacological activation of distinct processes.


Assuntos
Agonistas de Receptores de Canabinoides/farmacologia , Canabinoides/farmacologia , Receptor CB2 de Canabinoide/agonistas , Animais , Células CHO , Agonistas de Receptores de Canabinoides/química , Agonistas de Receptores de Canabinoides/metabolismo , Canabinoides/química , Canabinoides/metabolismo , Cricetinae , Cricetulus , Camundongos , Camundongos Endogâmicos C57BL , Estereoisomerismo
8.
Org Biomol Chem ; 15(9): 2086-2096, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28210722

RESUMO

We report the synthesis of terminally fluorinated HU-210 and HU-211 analogues (HU-210F and HU-211F, respectively) and their biological evaluation as ligands of cannabinoid receptors (CB1 and CB2) and N-methyl d-aspartate receptor (NMDAR). [18F]-labelled HU-210F was radiosynthesised from the bromo-substituted precursor. In vitro assays showed that both HU-210F and HU-211F retain the potent pharmacological profile of HU-210 and HU-211, suggesting that [18F]-radiolabelled HU-210F and HU-211F could have potential as PET tracers for in vivo imaging.

9.
Behav Pharmacol ; 26(3): 289-303, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25356730

RESUMO

The brain endocannabinoid system is a potential target for the treatment of psychiatric and metabolic conditions. Here, a novel CB1 receptor antagonist (ABD459) was synthesized and assayed for pharmacological efficacy in vitro and for modulation of food consumption, vigilance staging and cortical electroencephalography in the mouse. ABD459 completely displaced the CB1 agonist CP99540 at a Ki of 8.6 nmol/l, and did not affect basal, but antagonized CP55940-induced GTPγS binding with a KB of 7.7 nmol/l. Acute ABD459 (3-20 mg/kg) reliably inhibited food consumption in nonfasted mice, without affecting motor activity. Active food seeking was reduced for 5-6 h postdrug, with no rebound after washout. Epidural recording of electroencephalogram confirmed that ABD459 (3 mg/kg) robustly reduced rapid eye movement (REM) sleep, with no alterations of wakefulness or non-REM sleep. Effects were strongest during 3 h postdrug, followed by a progressive washout period. The CB1 antagonist AM251 (3 mg/kg) and agonist WIN-55,212-2 (WIN-2: 3 mg/kg) also reduced REM, but variously affected other vigilance stages. WIN-2 caused a global suppression of normalized spectral power. AM251 and ABD459 lowered delta power and increased power in the theta band in the hippocampus, but not the prefrontal cortex. The neutral antagonist ABD459 thus showed a specific role of endocannabinoid release in attention and arousal, possibly through modulation of cholinergic activity.


Assuntos
Antagonistas de Receptores de Canabinoides/farmacologia , Comportamento Alimentar/efeitos dos fármacos , Pirazóis/farmacologia , Receptor CB1 de Canabinoide/antagonistas & inibidores , Sono/efeitos dos fármacos , Animais , Benzoxazinas/farmacologia , Encéfalo/metabolismo , Cicloexanóis/farmacologia , Eletroencefalografia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Morfolinas/farmacologia , Atividade Motora/efeitos dos fármacos , Naftalenos/farmacologia , Piperidinas/farmacologia , Sono REM/efeitos dos fármacos , Vigília/efeitos dos fármacos
10.
Handb Exp Pharmacol ; 231: 1-37, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26408156

RESUMO

The endocannabinoid system consists of G protein-coupled cannabinoid CB(1) and CB(2) receptors, of endogenous compounds known as endocannabinoids that can target these receptors, of enzymes that catalyse endocannabinoid biosynthesis and metabolism, and of processes responsible for the cellular uptake of some endocannabinoids. This review presents in vitro evidence that most or all of the following 13 compounds are probably orthosteric endocannabinoids since they have all been detected in mammalian tissues in one or more investigation, and all been found to bind to cannabinoid receptors, probably to an orthosteric site: anandamide, 2-arachidonoylglycerol, noladin ether, dihomo-γ-linolenoylethanolamide, virodhamine, oleamide, docosahexaenoylethanolamide, eicosapentaenoylethanolamide, sphingosine, docosatetraenoylethanolamide, N-arachidonoyldopamine, N-oleoyldopamine and haemopressin. In addition, this review describes in vitro findings that suggest that the first eight of these compounds can activate CB(1) and sometimes also CB(2) receptors and that another two of these compounds are CB(1) receptor antagonists (sphingosine) or antagonists/inverse agonists (haemopressin). Evidence for the existence of at least three allosteric endocannabinoids is also presented. These endogenous compounds appear to target allosteric sites on cannabinoid receptors in vitro, either as negative allosteric modulators of the CB1 receptor (pepcan-12 and pregnenolone) or as positive allosteric modulators of this receptor (lipoxin A(4)) or of the CB(2) receptor (pepcan-12). Also discussed are current in vitro data that indicate the extent to which some established or putative orthosteric endocannabinoids seem to target non-cannabinoid receptors and ion channels, particularly at concentrations at which they have been found to interact with CB(1) or CB(2) receptors.


Assuntos
Agonistas de Receptores de Canabinoides/farmacologia , Endocanabinoides/farmacologia , Receptor CB1 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/agonistas , Transdução de Sinais/efeitos dos fármacos , Animais , Sítios de Ligação , Agonistas de Receptores de Canabinoides/metabolismo , Antagonistas de Receptores de Canabinoides/farmacologia , Relação Dose-Resposta a Droga , Endocanabinoides/metabolismo , Humanos , Ligantes , Ligação Proteica , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo
12.
Behav Pharmacol ; 25(2): 182-5, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24603340

RESUMO

Several allosteric modulators (AMs) of the CB1 receptor have been characterized in vitro, including Org27569, which enhances CB1-specific binding of [H]CP55,940, but behaves as an insurmountable CB1-receptor antagonist in several biochemical assays. Although a growing body of research has investigated the molecular actions of this unusual AM, it is unknown whether these actions translate to the whole animal. The purpose of the present study was to determine whether Org27569 would produce effects in well-established mouse behavioral assays sensitive to CB1 orthosteric agonists and antagonists. Similar to the orthosteric CB1 antagonist/inverse agonist rimonabant, Org27569 reduced food intake; however, this anorectic effect occurred independently of the CB1 receptor. Org27569 did not elicit CB1-mediated effects alone and lacked efficacy in altering antinociceptive, cataleptic, and hypothermic actions of the orthosteric agonists anandamide, CP55,940, and Δ-tetrahydrocannabinol. Moreover, it did not alter the discriminative stimulus effects of anandamide in FAAH-deficient mice or Δ-tetrahydrocannabinol in wild-type mice in the drug discrimination paradigm. These findings question the utility of Org27569 as a 'gold standard' CB1 AM and underscore the need for the development of CB1 AMs with pharmacology that translates from the molecular level to the whole animal.


Assuntos
Moduladores de Receptores de Canabinoides/farmacologia , Indóis/farmacologia , Piperidinas/farmacologia , Receptor CB1 de Canabinoide/metabolismo , Regulação Alostérica , Amidoidrolases/genética , Amidoidrolases/metabolismo , Animais , Ácidos Araquidônicos/farmacologia , Agonistas de Receptores de Canabinoides/farmacologia , Antagonistas de Receptores de Canabinoides/farmacologia , Moduladores de Receptores de Canabinoides/farmacocinética , Catalepsia/induzido quimicamente , Catalepsia/tratamento farmacológico , Catalepsia/metabolismo , Cicloexanóis/farmacologia , Dronabinol/farmacologia , Avaliação de Medicamentos , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/fisiologia , Endocanabinoides/farmacologia , Feminino , Hipotermia/induzido quimicamente , Hipotermia/tratamento farmacológico , Hipotermia/metabolismo , Indóis/farmacocinética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Knockout , Nociceptividade/efeitos dos fármacos , Nociceptividade/fisiologia , Piperidinas/farmacocinética , Alcamidas Poli-Insaturadas/farmacologia , Pirazóis/farmacologia , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/genética , Rimonabanto
13.
Bioorg Med Chem ; 22(17): 4770-83, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25065940

RESUMO

In our ongoing program aimed at deeply investigating the endocannabinoid system (ES), a set of new alkyl-resorcinol derivatives was prepared focusing on the nature and the importance of the carboxamide functionality. Binding studies on CB1 and CB2 receptors, monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH) showed that some of the newly developed compounds behaved as very potent cannabinoid receptor ligands (Ki in the nanomolar range) while, however, none of them was able to inhibit MAGL and/or FAAH. Derivative 11 was a potent CB1 and CB2 ligand, with Ki values similar to WIN 55,212, exhibiting a CB1 and CB2 agonist profile in vitro. In the formalin test of peripheral acute and inflammatory pain in mice, this compound showed a weak and delayed antinociceptive effect against the second phase of the nocifensive response, exhibiting, interestingly, a quite potent transient receptor potential ankyrin type-1 (TRPA1) channel agonist activity. Moreover, derivative 14, characterized by lower affinity but higher CB2 selectivity than 11, proved to behave as a weak CB2 competitive inverse agonist.


Assuntos
Analgésicos/farmacologia , Proteínas do Tecido Nervoso/agonistas , Receptor CB1 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/agonistas , Resorcinóis/farmacologia , Canais de Potencial de Receptor Transitório/agonistas , Analgésicos/síntese química , Analgésicos/química , Animais , Células CHO , Canais de Cálcio , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cricetulus , Relação Dose-Resposta a Droga , Humanos , Ligantes , Masculino , Camundongos , Estrutura Molecular , Células NIH 3T3 , Nociceptividade/efeitos dos fármacos , Dor/tratamento farmacológico , Medição da Dor/efeitos dos fármacos , Resorcinóis/síntese química , Resorcinóis/química , Relação Estrutura-Atividade , Canal de Cátion TRPA1
14.
Nat Med ; 13(4): 492-7, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17401376

RESUMO

The cannabinoid system is immunomodulatory and has been targeted as a treatment for the central nervous system (CNS) autoimmune disease multiple sclerosis. Using an animal model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE), we investigated the role of the CB(1) and CB(2) cannabinoid receptors in regulating CNS autoimmunity. We found that CB(1) receptor expression by neurons, but not T cells, was required for cannabinoid-mediated EAE suppression. In contrast, CB(2) receptor expression by encephalitogenic T cells was critical for controlling inflammation associated with EAE. CB(2)-deficient T cells in the CNS during EAE exhibited reduced levels of apoptosis, a higher rate of proliferation and increased production of inflammatory cytokines, resulting in severe clinical disease. Together, our results demonstrate that the cannabinoid system within the CNS plays a critical role in regulating autoimmune inflammation, with the CNS directly suppressing T-cell effector function via the CB(2) receptor.


Assuntos
Sistema Nervoso Central/metabolismo , Encefalite/metabolismo , Encefalomielite Autoimune Experimental/imunologia , Neurônios/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Linfócitos T/metabolismo , Animais , Apoptose/imunologia , Proliferação de Células , Primers do DNA , Encefalite/etiologia , Encefalomielite Autoimune Experimental/complicações , Encefalomielite Autoimune Experimental/metabolismo , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos
15.
Mol Pharmacol ; 83(2): 322-38, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23160940

RESUMO

We have previously identified allosteric modulators of the cannabinoid CB(1) receptor (Org 27569, PSNCBAM-1) that display a contradictory pharmacological profile: increasing the specific binding of the CB(1) receptor agonist [(3)H]CP55940 but producing a decrease in CB(1) receptor agonist efficacy. Here we investigated the effect one or both compounds in a broad range of signaling endpoints linked to CB(1) receptor activation. We assessed the effect of these compounds on CB(1) receptor agonist-induced [(35)S]GTPγS binding, inhibition, and stimulation of forskolin-stimulated cAMP production, phosphorylation of extracellular signal-regulated kinases (ERK), and ß-arrestin recruitment. We also investigated the effect of these allosteric modulators on CB(1) agonist binding kinetics. Both compounds display ligand dependence, being significantly more potent as modulators of CP55940 signaling as compared with WIN55212 and having little effect on [(3)H]WIN55212 binding. Org 27569 displays biased antagonism whereby it inhibits: agonist-induced guanosine 5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPγS) binding, simulation (Gα(s)-mediated), and inhibition (Gα(i)-mediated) of cAMP production and ß-arrestin recruitment. In contrast, it acts as an enhancer of agonist-induced ERK phosphorylation. Alone, the compound can act also as an allosteric agonist, increasing cAMP production and ERK phosphorylation. We find that in both saturation and kinetic-binding experiments, the Org 27569 and PSNCBAM-1 appeared to influence only orthosteric ligand maximum occupancy rather than affinity. The data indicate that the allosteric modulators share a common mechanism whereby they increase available high-affinity CB(1) agonist binding sites. The receptor conformation stabilized by the allosterics appears to induce signaling and also selectively traffics orthosteric agonist signaling via the ERK phosphorylation pathway.


Assuntos
Regulação Alostérica/efeitos dos fármacos , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/metabolismo , Animais , Arrestinas/metabolismo , Benzoxazinas/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Células CHO , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Colforsina/farmacologia , Cricetinae , AMP Cíclico/metabolismo , Cicloexanóis/farmacologia , Guanosina 5'-O-(3-Tiotrifosfato)/farmacologia , Células HEK293 , Humanos , Indóis/farmacologia , Cinética , Ligantes , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Morfolinas/farmacologia , Naftalenos/farmacologia , Fosforilação/efeitos dos fármacos , Piperidinas/farmacologia , Ligação Proteica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , beta-Arrestinas
16.
J Biol Chem ; 287(1): 91-104, 2012 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-22027819

RESUMO

GPR55 is activated by l-α-lysophosphatidylinositol (LPI) but also by certain cannabinoids. In this study, we investigated the GPR55 pharmacology of various cannabinoids, including analogues of the CB1 receptor antagonist Rimonabant®, CB2 receptor agonists, and Cannabis sativa constituents. To test ERK1/2 phosphorylation, a primary downstream signaling pathway that conveys LPI-induced activation of GPR55, a high throughput system, was established using the AlphaScreen® SureFire® assay. Here, we show that CB1 receptor antagonists can act both as agonists alone and as inhibitors of LPI signaling under the same assay conditions. This study clarifies the controversy surrounding the GPR55-mediated actions of SR141716A; some reports indicate the compound to be an agonist and some report antagonism. In contrast, we report that the CB2 ligand GW405833 behaves as a partial agonist of GPR55 alone and enhances LPI signaling. GPR55 has been implicated in pain transmission, and thus our results suggest that this receptor may be responsible for some of the antinociceptive actions of certain CB2 receptor ligands. The phytocannabinoids Δ9-tetrahydrocannabivarin, cannabidivarin, and cannabigerovarin are also potent inhibitors of LPI. These Cannabis sativa constituents may represent novel therapeutics targeting GPR55.


Assuntos
Canabinoides/farmacologia , Lisofosfolipídeos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Regulação Alostérica/efeitos dos fármacos , Analgésicos/química , Analgésicos/farmacologia , Canabinoides/química , Cannabis/química , Dronabinol/análogos & derivados , Dronabinol/farmacologia , Células HEK293 , Humanos , Ligantes , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neuralgia/metabolismo , Fosfoproteínas/metabolismo , Fosforilação/efeitos dos fármacos , Piperidinas/química , Piperidinas/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Pirazóis/química , Pirazóis/farmacologia , Receptor CB2 de Canabinoide/agonistas , Receptores de Canabinoides , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Rimonabanto
17.
Methods Mol Biol ; 2576: 111-118, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36152180

RESUMO

Displacement binding assays are nonfunctional assays mostly used with the aim of determining whether a certain compound (plant-derived or synthetic) can bind to a specific receptor with high affinity. Here, we describe the displacement binding assay that is carried out with a radioligand and CHO (Chinese Hamster Ovarian) cells stably transfected with the human cannabinoid CB2 receptor.


Assuntos
Bioensaio , Canabinoides , Animais , Células CHO , Canabinoides/metabolismo , Cricetinae , Cricetulus , Humanos , Ensaio Radioligante , Receptor CB2 de Canabinoide/genética , Receptores de Canabinoides
18.
Methods Mol Biol ; 2576: 171-179, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36152185

RESUMO

The cyclic AMP assay is a functional assay that is commonly used to determine the pharmacological behavior (agonists, antagonists, and inverse agonists) of G-protein coupled receptor ligands. Here, we describe the cyclic AMP assay that is carried out with commercially available nonradioligand ready-to-use kits and CHO (Chinese Hamster Ovarian) cells stably transfected with the human cannabinoid CB2 receptor.


Assuntos
Canabinoides , AMP Cíclico , Animais , Células CHO , Cricetinae , Cricetulus , Humanos , Ligantes , Receptor CB2 de Canabinoide/genética , Receptores de Canabinoides
19.
Mol Neurobiol ; 59(8): 5070-5083, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35666403

RESUMO

Δ9-Tetrahydrocannabinol (Δ9-THC) inhibits tics in individuals with Tourette syndrome (TS). Δ9-THC has similar affinities for CB1/CB2 cannabinoid receptors. However, the effect of HU-308, a selective CB2 receptor agonist, on repetitive behaviors has not been investigated. The effects of 2,5-dimethoxy-4-iodoamphetamine (DOI)-induced motor-like tics and Δ9-THC were studied with gene analysis. The effects of HU-308 on head twitch response (HTR), ear scratch response (ESR), and grooming behavior were compared between wildtype and CB2 receptor knockout (CB2-/-) mice, and in the presence/absence of DOI or SR141716A, a CB1 receptor antagonist/inverse agonist. The frequency of DOI-induced repetitive behaviors was higher in CB2-/- than in wildtype mice. HU-308 increased DOI-induced ESR and grooming behavior in adult CB2-/- mice. In juveniles, HU-308 inhibited HTR and ESR in the presence of DOI and SR141716A. HU-308 and beta-caryophyllene significantly increased HTR. In the left prefrontal cortex, DOI increased transcript expression of the CB2 receptor and GPR55, but reduced fatty acid amide hydrolase (FAAH) and α/ß-hydrolase domain-containing 6 (ABHD6) expression levels. CB2 receptors are required to reduce 5-HT2A/2C-induced tics in adults. HU-308 has an off-target effect which increases 5-HT2A/2C-induced motor-like tics in adult female mice. The increased HTR in juveniles induced by selective CB2 receptor agonists suggests that stimulation of the CB2 receptor may generate motor tics in children. Sex differences suggest that the CB2 receptor may contribute to the prevalence of TS in boys. The 5-HT2A/2C-induced reduction in endocannabinoid catabolic enzyme expression level may explain the increased endocannabinoids' levels in patients with TS.


Assuntos
Síndrome de Tourette , Animais , Dronabinol/farmacologia , Endocanabinoides , Feminino , Humanos , Masculino , Camundongos , Monoacilglicerol Lipases , Receptor CB2 de Canabinoide/genética , Receptores de Canabinoides , Rimonabanto/farmacologia , Serotonina , Tiques
20.
Eur J Pharm Sci ; 169: 106088, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34863873

RESUMO

The development of cannabinoid receptor type-1 (CB1R) modulators has been implicated in multiple pathophysiological events ranging from memory deficits to neurodegenerative disorders among others, even if their central psychiatric side effects such as depression, anxiety, and suicidal tendencies, have limited their clinical use. Thus, the identification of ligands which selectively act on peripheral CB1Rs, is becoming more interesting. A recent study reported a class of peripheral CB1R selective antagonists, characterized by a 5-aryl substituted nicotinamide core. These derivatives have structural similarities with the biphenyl compounds, endowed with CB2R antagonist activity, previously synthesized by our research group. In this work we combined the pharmacophoric portion of both classes, in order to obtain novel CBR antagonists. Among the synthesized compounds rather unexpectedly two compounds of this series, C7 and C10, did not show the radioligand ([3H]CP55940) displacement on CB1R but increased binding (∼ 150%), suggesting a possible allosteric behavior. Computational studies were performed to investigate the role of these compounds in CB1R modulation. The analysis of their binding poses in two different binding cavities of the CB1R surface, revealed a preferred interaction with the experimental binding site for negative allosteric modulators.


Assuntos
Niacinamida , Receptor CB1 de Canabinoide , Regulação Alostérica , Sítios de Ligação , Humanos , Ligantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA