Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Circ Res ; 131(3): 239-257, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35770662

RESUMO

BACKGROUND: Conversion of cardiac stromal cells into myofibroblasts is typically associated with hypoxia conditions, metabolic insults, and/or inflammation, all of which are predisposing factors to cardiac fibrosis and heart failure. We hypothesized that this conversion could be also mediated by response of these cells to mechanical cues through activation of the Hippo transcriptional pathway. The objective of the present study was to assess the role of cellular/nuclear straining forces acting in myofibroblast differentiation of cardiac stromal cells under the control of YAP (yes-associated protein) transcription factor and to validate this finding using a pharmacological agent that interferes with the interactions of the YAP/TAZ (transcriptional coactivator with PDZ-binding motif) complex with their cognate transcription factors TEADs (TEA domain transcription factors), under high-strain and profibrotic stimulation. METHODS: We employed high content imaging, 2-dimensional/3-dimensional culture, atomic force microscopy mapping, and molecular methods to prove the role of cell/nuclear straining in YAP-dependent fibrotic programming in a mouse model of ischemia-dependent cardiac fibrosis and in human-derived primitive cardiac stromal cells. We also tested treatment of cells with Verteporfin, a drug known to prevent the association of the YAP/TAZ complex with their cognate transcription factors TEADs. RESULTS: Our experiments suggested that pharmacologically targeting the YAP-dependent pathway overrides the profibrotic activation of cardiac stromal cells by mechanical cues in vitro, and that this occurs even in the presence of profibrotic signaling mediated by TGF-ß1 (transforming growth factor beta-1). In vivo administration of Verteporfin in mice with permanent cardiac ischemia reduced significantly fibrosis and morphometric remodeling but did not improve cardiac performance. CONCLUSIONS: Our study indicates that preventing molecular translation of mechanical cues in cardiac stromal cells reduces the impact of cardiac maladaptive remodeling with a positive effect on fibrosis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Fosfoproteínas , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Fibrose , Humanos , Camundongos , Fosfoproteínas/metabolismo , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional , Verteporfina , Proteínas de Sinalização YAP
2.
Int J Mol Sci ; 25(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38474123

RESUMO

Radiotherapy-induced cardiac toxicity and consequent diseases still represent potential severe late complications for many cancer survivors who undergo therapeutic thoracic irradiation. We aimed to assess the phenotypic and paracrine features of resident cardiac mesenchymal stromal cells (CMSCs) at early follow-up after the end of thoracic irradiation of the heart as an early sign and/or mechanism of cardiac toxicity anticipating late organ dysfunction. Resident CMSCs were isolated from a rat model of fractionated thoracic irradiation with accurate and clinically relevant heart dosimetry that developed delayed dose-dependent cardiac dysfunction after 1 year. Cells were isolated 6 and 12 weeks after the end of radiotherapy and fully characterized at the transcriptional, paracrine, and functional levels. CMSCs displayed several altered features in a dose- and time-dependent trend, with the most impaired characteristics observed in those exposed in situ to the highest radiation dose with time. In particular, altered features included impaired cell migration and 3D growth and a and significant association of transcriptomic data with GO terms related to altered cytokine and growth factor signaling. Indeed, the altered paracrine profile of CMSCs derived from the group at the highest dose at the 12-week follow-up gave significantly reduced angiogenic support to endothelial cells and polarized macrophages toward a pro-inflammatory profile. Data collected in a clinically relevant rat model of heart irradiation simulating thoracic radiotherapy suggest that early paracrine and transcriptional alterations of the cardiac stroma may represent a dose- and time-dependent biological substrate for the delayed cardiac dysfunction phenotype observed in vivo.


Assuntos
Cardiopatias , Células-Tronco Mesenquimais , Lesões por Radiação , Ratos , Humanos , Animais , Cardiotoxicidade/metabolismo , Células Endoteliais/metabolismo , Células-Tronco Mesenquimais/metabolismo , Fenótipo , Cardiopatias/metabolismo , Lesões por Radiação/metabolismo
3.
Int J Mol Sci ; 22(7)2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33810253

RESUMO

Biological aging is a process associated with a gradual decline in tissues' homeostasis based on the progressive inability of the cells to self-renew. Cellular senescence is one of the hallmarks of the aging process, characterized by an irreversible cell cycle arrest due to reactive oxygen species (ROS) production, telomeres shortening, chronic inflammatory activation, and chromatin modifications. In this review, we will describe the effects of senescence on tissue structure, extracellular matrix (ECM) organization, and nucleus architecture, and see how these changes affect (are affected by) mechano-transduction. In our view, this is essential for a deeper understanding of the progressive pathological evolution of the cardiovascular system and its relationship with the detrimental effects of risk factors, known to act at an epigenetic level.


Assuntos
Doenças Cardiovasculares/metabolismo , Senescência Celular , Rigidez Vascular , Animais , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/patologia , Montagem e Desmontagem da Cromatina , Citoesqueleto/metabolismo , Humanos , Mecanotransdução Celular
4.
Int J Mol Sci ; 21(1)2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31861579

RESUMO

The heart is par excellence the 'in-motion' organ in the human body. Compelling evidence shows that, besides generating forces to ensure continuous blood supply (e.g., myocardial contractility) or withstanding passive forces generated by flow (e.g., shear stress on endocardium, myocardial wall strain, and compression strain at the level of cardiac valves), cells resident in the heart respond to mechanical cues with the activation of mechanically dependent molecular pathways. Cardiac stromal cells, most commonly named cardiac fibroblasts, are central in the pathologic evolution of the cardiovascular system. In their normal function, these cells translate mechanical cues into signals that are necessary to renew the tissues, e.g., by continuously rebuilding the extracellular matrix being subjected to mechanical stress. In the presence of tissue insults (e.g., ischemia), inflammatory cues, or modifiable/unmodifiable risk conditions, these mechanical signals may be 'misinterpreted' by cardiac fibroblasts, giving rise to pathology programming. In fact, these cells are subject to changing their phenotype from that of matrix renewing to that of matrix scarring cells-the so-called myo-fibroblasts-involved in cardiac fibrosis. The links between alterations in the abilities of cardiac fibroblasts to 'sense' mechanical cues and molecular pathology programming are still under investigation. On the other hand, various evidence suggests that cell mechanics may control stromal cells phenotype by modifying the epigenetic landscape, and this involves specific non-coding RNAs. In the present contribution, we will provide examples in support of this more integrated vision of cardiac fibrotic progression based on the decryption of mechanical cues in the context of epigenetic and non-coding RNA biology.


Assuntos
Epigênese Genética , Miocárdio/patologia , RNA não Traduzido/genética , Animais , Progressão da Doença , Fibrose , Humanos , Mecanotransdução Celular
5.
Biotechnol Bioeng ; 113(4): 859-69, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26444553

RESUMO

Cardiac cell function is substantially influenced by the nature and intensity of the mechanical loads the cells experience. Cardiac fibroblasts (CFs) are primarily involved in myocardial tissue remodeling: at the onset of specific pathological conditions, CFs activate, proliferate, differentiate, and critically alter the amount of myocardial extra-cellular matrix with important consequences for myocardial functioning. While cyclic mechanical strain has been shown to increase matrix synthesis of CFs in vitro, the role of mechanical cues in CFs proliferation is unclear. We here developed a multi-chamber cell straining microdevice for cell cultures under uniform, uniaxial cyclic strain. After careful characterization of the strain field, we extracted human heart-derived CFs and performed cyclic strain experiments. We subjected cells to 2% or 8% cyclic strain for 24 h or 72 h, using immunofluorescence to investigate markers of cell morphology, cell proliferation (Ki67, EdU, phospho-Histone-H3) and subcellular localization of the mechanotransduction-associated transcription factor YAP. Cell morphology was affected by cyclic strain in terms of cell area, cell and nuclear shape and cellular alignment. We additionally observed a strain intensity-dependent control of cell growth: a significant proliferation increase occurred at 2% cyclic strain, while time-dependent effects took place upon 8% cyclic strain. The YAP-dependent mechano-transduction pathway was similarly activated in both strain conditions. These results demonstrate a differential effect of cyclic strain intensity on human CFs proliferation control and provide insights into the YAP-dependent mechano-sensing machinery of human CFs.


Assuntos
Técnicas de Cultura de Células/métodos , Proliferação de Células , Fibroblastos/fisiologia , Mecanotransdução Celular , Estresse Mecânico , Biomarcadores/análise , Técnicas de Cultura de Células/instrumentação , Células Cultivadas , Técnicas Citológicas/instrumentação , Técnicas Citológicas/métodos , Fibroblastos/citologia , Humanos
6.
Arterioscler Thromb Vasc Biol ; 35(3): 675-88, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25573856

RESUMO

OBJECTIVE: We investigated the association between the functional, epigenetic, and expressional profile of human adventitial progenitor cells (APCs) and therapeutic activity in a model of limb ischemia. APPROACH AND RESULTS: Antigenic and functional features were analyzed throughout passaging in 15 saphenous vein (SV)-derived APC lines, of which 10 from SV leftovers of coronary artery bypass graft surgery and 5 from varicose SV removal. Moreover, 5 SV-APC lines were transplanted (8×10(5) cells, IM) in mice with limb ischemia. Blood flow and capillary and arteriole density were correlated with functional characteristics and DNA methylation/expressional markers of transplanted cells. We report successful expansion of tested lines, which reached the therapeutic target of 30 to 50 million cells in ≈10 weeks. Typical antigenic profile, viability, and migratory and proangiogenic activities were conserved through passaging, with low levels of replicative senescence. In vivo, SV-APC transplantation improved blood flow recovery and revascularization of ischemic limbs. Whole genome screening showed an association between DNA methylation at the promoter or gene body level and microvascular density and to a lesser extent with blood flow recovery. Expressional studies highlighted the implication of an angiogenic network centered on the vascular endothelial growth factor receptor as a predictor of microvascular outcomes. FLT-1 gene silencing in SV-APCs remarkably reduced their ability to form tubes in vitro and support tube formation by human umbilical vein endothelial cells, thus confirming the importance of this signaling in SV-APC angiogenic function. CONCLUSIONS: DNA methylation landscape illustrates different therapeutic activities of human APCs. Epigenetic screening may help identify determinants of therapeutic vasculogenesis in ischemic disease.


Assuntos
Túnica Adventícia/transplante , Metilação de DNA , Epigênese Genética , Isquemia/cirurgia , Músculo Esquelético/irrigação sanguínea , Neovascularização Fisiológica , Veia Safena/transplante , Transplante de Células-Tronco , Células-Tronco/fisiologia , Túnica Adventícia/citologia , Animais , Velocidade do Fluxo Sanguíneo , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Modelos Animais de Doenças , Perfilação da Expressão Gênica/métodos , Membro Posterior , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Isquemia/genética , Isquemia/fisiopatologia , Camundongos , Neovascularização Fisiológica/genética , Recuperação de Função Fisiológica , Fluxo Sanguíneo Regional , Veia Safena/citologia , Células-Tronco/metabolismo , Fatores de Tempo
7.
J Cell Mol Med ; 18(9): 1785-96, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24909956

RESUMO

GPR17 is a G(i) -coupled dual receptor activated by uracil-nucleotides and cysteinyl-leukotrienes. These mediators are massively released into hypoxic tissues. In the normal heart, GPR17 expression has been reported. By contrast, its role in myocardial ischaemia has not yet been assessed. In the present report, the expression of GPR17 was investigated in mice before and at early stages after myocardial infarction by using immunofluorescence, flow cytometry and RT-PCR. Before induction of ischaemia, results indicated the presence of the receptor in a population of stromal cells expressing the stem-cell antigen-1 (Sca-1). At early stages after ligation of the coronary artery, the receptor was expressed in Sca-1(+) cells, and cells stained with Isolectin-B4 and anti-CD45 antibody. GPR17(+) cells also expressed mesenchymal marker CD44. GPR17 function was investigated in vitro in a Sca-1(+)/CD31(-) cell line derived from normal hearts. These experiments showed a migratory function of the receptor by treatment with UDP-glucose and leukotriene LTD4, two GPR17 pharmacological agonists. The GPR17 function was finally assessed in vivo by treating infarcted mice with Cangrelor, a pharmacological receptor antagonist, which, at least in part, inhibited early recruitment of GPR17(+) and CD45(+) cells. These findings suggest a regulation of heart-resident mesenchymal cells and blood-borne cellular species recruitment following myocardial infarction, orchestrated by GPR17.


Assuntos
Células-Tronco Mesenquimais/fisiologia , Infarto do Miocárdio/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Animais , Antígenos Ly/metabolismo , Movimento Celular , Receptores de Hialuronatos , Antígenos Comuns de Leucócito/metabolismo , Leucotrieno D4/farmacologia , Leucotrieno D4/fisiologia , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/patologia , Proteínas do Tecido Nervoso/agonistas , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Uridina Difosfato Glucose/farmacologia , Uridina Difosfato Glucose/fisiologia
8.
Front Cardiovasc Med ; 10: 1160833, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37113704

RESUMO

Calcific aortic valve disease (CAVD) is the most frequent valvular heart disorder, and the one with the highest impact and burden in the elderly population. While the quality and standardization of the current aortic valve replacements has reached unprecedented levels with the commercialization of minimally-invasive implants and the design of procedures for valve repair, the need of supplementary therapies able to block or retard the course of the pathology before patients need the intervention is still awaited. In this contribution, we will discuss the emerging opportunity to set up devices to mechanically rupture the calcium deposits accumulating in the aortic valve and restore, at least in part, the pliability and the mechanical function of the calcified leaflets. Starting from the evidences gained by mechanical decalcification of coronary arteries in interventional cardiology procedures, a practice already in the clinical setting, we will discuss the advantages and the potential drawbacks of valve lithotripsy devices and their potential applicability in the clinical scenario.

9.
J Clin Med ; 12(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37240504

RESUMO

After more than 20 years following the introduction of regenerative medicine to address the problem of cardiac diseases, still questions arise as to the best cell types and materials to use to obtain effective clinical translation. Now that it is definitively clear that the heart does not have a consistent reservoir of stem cells that could give rise to new myocytes, and that there are cells that could contribute, at most, with their pro-angiogenic or immunomodulatory potential, there is fierce debate on what will emerge as the winning strategy. In this regard, new developments in somatic cells' reprogramming, material science and cell biophysics may be of help, not only for protecting the heart from the deleterious consequences of aging, ischemia and metabolic disorders, but also to boost an endogenous regeneration potential that seems to be lost in the adulthood of the human heart.

10.
Nat Rev Cardiol ; 20(5): 309-324, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36376437

RESUMO

The term 'mechanosensation' describes the capacity of cells to translate mechanical stimuli into the coordinated regulation of intracellular signals, cellular function, gene expression and epigenetic programming. This capacity is related not only to the sensitivity of the cells to tissue motion, but also to the decryption of tissue geometric arrangement and mechanical properties. The cardiac stroma, composed of fibroblasts, has been historically considered a mechanically passive component of the heart. However, the latest research suggests that the mechanical functions of these cells are an active and necessary component of the developmental biology programme of the heart that is involved in myocardial growth and homeostasis, and a crucial determinant of cardiac repair and disease. In this Review, we discuss the general concept of cell mechanosensation and force generation as potent regulators in heart development and pathology, and describe the integration of mechanical and biohumoral pathways predisposing the heart to fibrosis and failure. Next, we address the use of 3D culture systems to integrate tissue mechanics to mimic cardiac remodelling. Finally, we highlight the potential of mechanotherapeutic strategies, including pharmacological treatment and device-mediated left ventricular unloading, to reverse remodelling in the failing heart.


Assuntos
Insuficiência Cardíaca , Humanos , Ventrículos do Coração/patologia , Fibroblastos/patologia , Miocárdio/patologia , Remodelação Ventricular
11.
Cardiovasc Res ; 119(2): 336-356, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35875883

RESUMO

Long COVID has become a world-wide, non-communicable epidemic, caused by long-lasting multiorgan symptoms that endure for weeks or months after SARS-CoV-2 infection has already subsided. This scientific document aims to provide insight into the possible causes and therapeutic options available for the cardiovascular manifestations of long COVID. In addition to chronic fatigue, which is a common symptom of long COVID, patients may present with chest pain, ECG abnormalities, postural orthostatic tachycardia, or newly developed supraventricular or ventricular arrhythmias. Imaging of the heart and vessels has provided evidence of chronic, post-infectious perimyocarditis with consequent left or right ventricular failure, arterial wall inflammation, or microthrombosis in certain patient populations. Better understanding of the underlying cellular and molecular mechanisms of long COVID will aid in the development of effective treatment strategies for its cardiovascular manifestations. A number of mechanisms have been proposed, including those involving direct effects on the myocardium, microthrombotic damage to vessels or endothelium, or persistent inflammation. Unfortunately, existing circulating biomarkers, coagulation, and inflammatory markers, are not highly predictive for either the presence or outcome of long COVID when measured 3 months after SARS-CoV-2 infection. Further studies are needed to understand underlying mechanisms, identify specific biomarkers, and guide future preventive strategies or treatments to address long COVID and its cardiovascular sequelae.


Assuntos
COVID-19 , Cardiopatias , Humanos , Síndrome de COVID-19 Pós-Aguda , SARS-CoV-2 , Coração , Miocárdio , Teste para COVID-19
12.
Arterioscler Thromb Vasc Biol ; 31(7): 1589-97, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21527751

RESUMO

OBJECTIVE: The vascular competence of human-derived hematopoietic progenitors for postnatal vascularization is still poorly characterized. It is unclear whether, in the absence of ischemia, hematopoietic progenitors participate in neovascularization and whether they play a role in new blood vessel formation by incorporating into developing vessels or by a paracrine action. METHODS AND RESULTS: In the present study, human cord blood-derived CD34(+) (hCD34(+)) cells were transplanted into pre- and postgastrulation zebrafish embryos and in an adult vascular regeneration model induced by caudal fin amputation. When injected before gastrulation, hCD34(+) cells cosegregated with the presumptive zebrafish hemangioblasts, characterized by Scl and Gata2 expression, in the anterior and posterior lateral mesoderm and were involved in early development of the embryonic vasculature. These morphogenetic events occurred without apparent lineage reprogramming, as shown by CD45 expression. When transplanted postgastrulation, hCD34(+) cells were recruited into developing vessels, where they exhibited a potent paracrine proangiogenic action. Finally, hCD34(+) cells rescued vascular defects induced by Vegf-c in vivo targeting and enhanced vascular repair in the zebrafish fin amputation model. CONCLUSIONS: These results indicate an unexpected developmental ability of human-derived hematopoietic progenitors and support the hypothesis of an evolutionary conservation of molecular pathways involved in endothelial progenitor differentiation in vivo.


Assuntos
Nadadeiras de Animais/irrigação sanguínea , Antígenos CD34/análise , Diferenciação Celular , Transplante de Células-Tronco de Sangue do Cordão Umbilical , Células Endoteliais/transplante , Sangue Fetal/citologia , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas , Neovascularização Fisiológica , Peixe-Zebra , Amputação Cirúrgica , Nadadeiras de Animais/cirurgia , Animais , Animais Geneticamente Modificados , Células CACO-2 , Diferenciação Celular/efeitos dos fármacos , Movimento Celular , Células Endoteliais/imunologia , Sangue Fetal/imunologia , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Hematopoéticas/imunologia , Humanos , Comunicação Parácrina , Fenótipo , Interferência de RNA , Proteínas Recombinantes de Fusão/metabolismo , Regeneração , Transdução de Sinais , Fator C de Crescimento do Endotélio Vascular/genética , Fator C de Crescimento do Endotélio Vascular/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
13.
Front Cardiovasc Med ; 9: 863136, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35509271

RESUMO

The absence of pharmacological treatments to reduce or retard the progression of cardiac valve diseases makes replacement with artificial prostheses (mechanical or bio-prosthetic) essential. Given the increasing incidence of cardiac valve pathologies, there is always a more stringent need for valve replacements that offer enhanced performance and durability. Unfortunately, surgical valve replacement with mechanical or biological substitutes still leads to disadvantages over time. In fact, mechanical valves require a lifetime anticoagulation therapy that leads to a rise in thromboembolic complications, while biological valves are still manufactured with non-living tissue, consisting of aldehyde-treated xenograft material (e.g., bovine pericardium) whose integration into the host fails in the mid- to long-term due to unresolved issues regarding immune-compatibility. While various solutions to these shortcomings are currently under scrutiny, the possibility to implant fully biologically compatible valve replacements remains elusive, at least for large-scale deployment. In this regard, the failure in translation of most of the designed tissue engineered heart valves (TEHVs) to a viable clinical solution has played a major role. In this review, we present a comprehensive overview of the TEHVs developed until now, and critically analyze their strengths and limitations emerging from basic research and clinical trials. Starting from these aspects, we will also discuss strategies currently under investigation to produce valve replacements endowed with a true ability to self-repair, remodel and regenerate. We will discuss these new developments not only considering the scientific/technical framework inherent to the design of novel valve prostheses, but also economical and regulatory aspects, which may be crucial for the success of these novel designs.

14.
Front Cardiovasc Med ; 9: 1013183, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36465472

RESUMO

The constantly increasing incidence of coronary artery disease worldwide makes necessary to set advanced therapies and tools such as tissue engineered vessel grafts (TEVGs) to surpass the autologous grafts [(i.e., mammary and internal thoracic arteries, saphenous vein (SV)] currently employed in coronary artery and vascular surgery. To this aim, in vitro cellularization of artificial tubular scaffolds still holds a good potential to overcome the unresolved problem of vessel conduits availability and the issues resulting from thrombosis, intima hyperplasia and matrix remodeling, occurring in autologous grafts especially with small caliber (<6 mm). The employment of silk-based tubular scaffolds has been proposed as a promising approach to engineer small caliber cellularized vascular constructs. The advantage of the silk material is the excellent manufacturability and the easiness of fiber deposition, mechanical properties, low immunogenicity and the extremely high in vivo biocompatibility. In the present work, we propose a method to optimize coverage of the luminal surface of silk electrospun tubular scaffold with endothelial cells. Our strategy is based on seeding endothelial cells (ECs) on the luminal surface of the scaffolds using a low-speed rolling. We show that this procedure allows the formation of a nearly complete EC monolayer suitable for flow-dependent studies and vascular maturation, as a step toward derivation of complete vascular constructs for transplantation and disease modeling.

15.
Front Cardiovasc Med ; 9: 884031, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711359

RESUMO

Intimal hyperplasia is the leading cause of graft failure in aortocoronary bypass grafts performed using human saphenous vein (SV). The long-term consequences of the altered pulsatile stress on the cells that populate the vein wall remains elusive, particularly the effects on saphenous vein progenitors (SVPs), cells resident in the vein adventitia with a relatively wide differentiation capacity. In the present study, we performed global transcriptomic profiling of SVPs undergoing uniaxial cyclic strain in vitro. This type of mechanical stimulation is indeed involved in the pathology of the SV. Results showed a consistent stretch-dependent gene regulation in cyclically strained SVPs vs. controls, especially at 72 h. We also observed a robust mechanically related overexpression of Adhesion Molecule with Ig Like Domain 2 (AMIGO2), a cell surface type I transmembrane protein involved in cell adhesion. The overexpression of AMIGO2 in stretched SVPs was associated with the activation of the transforming growth factor ß pathway and modulation of intercellular signaling, cell-cell, and cell-matrix interactions. Moreover, the increased number of cells expressing AMIGO2 detected in porcine SV adventitia using an in vivo arterialization model confirms the upregulation of AMIGO2 protein by the arterial-like environment. These results show that mechanical stress promotes SVPs' molecular phenotypic switching and increases their responsiveness to extracellular environment alterations, thus prompting the targeting of new molecular effectors to improve the outcome of bypass graft procedure.

16.
Acta Biomater ; 152: 300-312, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36055606

RESUMO

Cardiac fibrosis is characterized by a maladaptive remodeling of the myocardium, which is controlled by various inflammatory pathways and cytokines. This remodeling is accompanied by a significant stiffening of the matrix, which may contribute to further activate collagen synthesis and scar formation. Evidence suggests that TGF-ß1 signaling, the main pro-fibrotic pathway in cardiac fibrosis, might cooperates with the Hippo transcriptional pathway by activating YAP. To directly test the cooperation of mechanical cues and paracrine signaling in cardiac fibrosis, we developed a 3D model of cardiac extracellular matrix remodeling by generating tissue blocks with Gelatin Methacrylate, a bioink with tunable stiffness, and human cardiosphere-derived stromal cells. Using this strategy, we assessed the cooperation of TGF-ß1 and YAP transcriptional factor to matrix compaction. Using mechanical compression tests, Masson's trichrome staining, immunofluorescence, and RT-qPCR, we demonstrate that pharmacological inhibition of YAP complex reverts almost completely the pro-compaction phenotype and the matrix-remodeling activity of cells treated with TGF-ß1. Our data show a direct connection between the classical pro-fibrotic signaling driven by TGF-ß1 and the mechanically activated pathways under the control of YAP in cardiac remodeling. Treatment with the elective drug targeting YAP is sufficient to override this cooperation with potential benefits for anti-fibrotic therapeutic applications. STATEMENT OF SIGNIFICANCE: Heart failure is a pathology in continuous growth worldwide, characterized by a progressive fibrosis, which decreases the pumping efficiency of the heart. Experimental evidences suggest that fibroblasts, normally responsible for the turnover of the cardiac matrix, are involved in myocardial fibrosis by differentiating into 'myofibroblasts'. These cells remodel extensively the cardiac extracellular matrix and deposit abundant collagen with a consequent increase in stiffness. In the present contribution, we propose a new 3D model of cell-mediated cardiac extracellular matrix stiffening to investigate the mechano-chemical mechanisms underlying the onset of the pathology. We also consolidate a pharmacological treatment able to prevent the pathological activation of fibroblasts with potential benefits for anti-fibrotic treatment of the failing heart.


Assuntos
Miocárdio , Miofibroblastos , Fator de Crescimento Transformador beta1 , Proteínas de Sinalização YAP , Colágeno/metabolismo , Fibroblastos/metabolismo , Fibrose , Gelatina , Humanos , Metacrilatos/metabolismo , Miocárdio/patologia , Miofibroblastos/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Proteínas de Sinalização YAP/metabolismo
17.
Front Cardiovasc Med ; 9: 850393, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35402526

RESUMO

The increasing incidence of calcific aortic valve disease necessitates the elaboration of new strategies to retard the progression of the pathology with an innovative solution. While the increasing diffusion of the transcatheter aortic valve replacements (TAVRs) allows a mini-invasive approach to aortic valve substitution as an alternative to conventional surgical replacement (SAVR) in an always larger patient population, TAVR implantation still has contraindications for young patients. In addition, it is liable to undergo calcification with the consequent necessity of re-intervention with conventional valve surgery or repeated implantation in the so-called TAVR-in-TAVR procedure. Inspired by applications for non-cardiac pathologies or for vascular decalcification before stenting (i.e., coronary lithotripsy), in the present study, we show the feasibility of human valve treatment with a mini-invasive device tailored to deliver shockwaves to the calcific leaflets. We provide evidence of efficient calcium deposit ruptures in human calcified leaflets treated ex vivo and the safety of the treatment in pigs. The use of this device could be helpful to perform shockwaves valvuloplasty as an option to retard TAVR/SAVR, or as a pretreatment to facilitate prosthesis implantation and minimize the occurrence of paravalvular leak.

18.
Cardiovasc Res ; 118(12): 2566-2581, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34505881

RESUMO

Circadian rhythms are internal regulatory processes controlled by molecular clocks present in essentially every mammalian organ that temporally regulate major physiological functions. In the cardiovascular system, the circadian clock governs heart rate, blood pressure, cardiac metabolism, contractility, and coagulation. Recent experimental and clinical studies highlight the possible importance of circadian rhythms in the pathophysiology, outcome, or treatment success of cardiovascular disease, including ischaemic heart disease. Disturbances in circadian rhythms are associated with increased cardiovascular risk and worsen outcome. Therefore, it is important to consider circadian rhythms as a key research parameter to better understand cardiac physiology/pathology, and to improve the chances of translation and efficacy of cardiac therapies, including those for ischaemic heart disease. The aim of this Position Paper by the European Society of Cardiology Working Group Cellular Biology of the Heart is to highlight key aspects of circadian rhythms to consider for improvement of preclinical and translational studies related to ischaemic heart disease and cardioprotection. Applying these considerations to future studies may increase the potential for better translation of new treatments into successful clinical outcomes.


Assuntos
Doenças Cardiovasculares , Sistema Cardiovascular , Doença da Artéria Coronariana , Isquemia Miocárdica , Animais , Ritmo Circadiano , Humanos , Mamíferos , Pesquisa Translacional Biomédica
19.
Cardiovasc Res ; 118(15): 3016-3051, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34999816

RESUMO

Cardiovascular diseases represent a major cause of morbidity and mortality, necessitating research to improve diagnostics, and to discover and test novel preventive and curative therapies, all of which warrant experimental models that recapitulate human disease. The translation of basic science results to clinical practice is a challenging task, in particular for complex conditions such as cardiovascular diseases, which often result from multiple risk factors and comorbidities. This difficulty might lead some individuals to question the value of animal research, citing the translational 'valley of death', which largely reflects the fact that studies in rodents are difficult to translate to humans. This is also influenced by the fact that new, human-derived in vitro models can recapitulate aspects of disease processes. However, it would be a mistake to think that animal models do not represent a vital step in the translational pathway as they do provide important pathophysiological insights into disease mechanisms particularly on an organ and systemic level. While stem cell-derived human models have the potential to become key in testing toxicity and effectiveness of new drugs, we need to be realistic, and carefully validate all new human-like disease models. In this position paper, we highlight recent advances in trying to reduce the number of animals for cardiovascular research ranging from stem cell-derived models to in situ modelling of heart properties, bioinformatic models based on large datasets, and state-of-the-art animal models, which show clinically relevant characteristics observed in patients with a cardiovascular disease. We aim to provide a guide to help researchers in their experimental design to translate bench findings to clinical routine taking the replacement, reduction, and refinement (3R) as a guiding concept.


Assuntos
Doenças Cardiovasculares , Humanos , Animais , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/terapia , Projetos de Pesquisa , Modelos Animais
20.
Am J Physiol Heart Circ Physiol ; 300(5): H1875-84, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21357510

RESUMO

The efficacy of cardiac repair by stem cell administration relies on a successful functional integration of injected cells into the host myocardium. Safety concerns have been raised about the possibility that stem cells may induce foci of arrhythmia in the ischemic myocardium. In a previous work (36), we showed that human cord blood CD34(+) cells, when cocultured on neonatal mouse cardiomyocytes, exhibit excitation-contraction coupling features similar to those of cardiomyocytes, even though no human genes were upregulated. The aims of the present work are to investigate whether human CD34(+) cells, isolated after 1 wk of coculture with neonatal ventricular myocytes, possess molecular and functional properties of cardiomyocytes and to discriminate, using a reporter gene system, whether cardiac differentiation derives from a (trans)differentiation or a cell fusion process. Umbilical cord blood CD34(+) cells were isolated by a magnetic cell sorting method, transduced with a lentiviral vector carrying the enhanced green fluorescent protein (EGFP) gene, and seeded onto primary cultures of spontaneously beating rat neonatal cardiomyocytes. Cocultured EGFP(+)/CD34(+)-derived cells were analyzed for their electrophysiological features at different time points. After 1 wk in coculture, EGFP(+) cells, in contact with cardiomyocytes, were spontaneously contracting and had a maximum diastolic potential (MDP) of -53.1 mV, while those that remained isolated from the surrounding myocytes did not contract and had a depolarized resting potential of -11.4 mV. Cells were then resuspended and cultured at low density to identify EGFP(+) progenitor cell derivatives. Under these conditions, we observed single EGFP(+) beating cells that had acquired an hyperpolarization-activated current typical of neonatal cardiomyocytes (EGFP(+) cells, -2.24 ± 0.89 pA/pF; myocytes, -1.99 ± 0.63 pA/pF, at -125 mV). To discriminate between cell autonomous differentiation and fusion, EGFP(+)/CD34(+) cells were cocultured with cardiac myocytes infected with a red fluorescence protein-lentiviral vector; under these conditions we found that 100% of EGFP(+) cells were also red fluorescent protein positive, suggesting cell fusion as the mechanism by which cardiac functional features are acquired.


Assuntos
Antígenos CD34/metabolismo , Comunicação Celular/fisiologia , Fusão Celular/métodos , Sangue Fetal/citologia , Miócitos Cardíacos/citologia , Células-Tronco/citologia , Células-Tronco/imunologia , Animais , Antígenos CD34/genética , Diferenciação Celular/fisiologia , Células Cultivadas , Técnicas de Cocultura , Transplante de Células-Tronco de Sangue do Cordão Umbilical , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Modelos Animais , Contração Miocárdica/fisiologia , Miócitos Cardíacos/fisiologia , Ratos , Células-Tronco/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA