Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Pineal Res ; 76(4): e12961, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38751172

RESUMO

Melatonin is a neurohormone synthesized from dietary tryptophan in various organs, including the pineal gland and the retina. In the pineal gland, melatonin is produced at night under the control of the master clock located in the suprachiasmatic nuclei of the hypothalamus. Under physiological conditions, the pineal gland seems to constitute the unique source of circulating melatonin. Melatonin is involved in cellular metabolism in different ways. First, the circadian rhythm of melatonin helps the maintenance of proper internal timing, the disruption of which has deleterious effects on metabolic health. Second, melatonin modulates lipid metabolism, notably through diminished lipogenesis, and it has an antidiabetic effect, at least in several animal models. Third, pharmacological doses of melatonin have antioxidative, free radical-scavenging, and anti-inflammatory properties in various in vitro cellular models. As a result, melatonin can be considered both a circadian time-giver and a homeostatic monitor of cellular metabolism, via multiple mechanisms of action that are not all fully characterized. Aging, circadian disruption, and artificial light at night are conditions combining increased metabolic risks with diminished circulating levels of melatonin. Accordingly, melatonin supplementation could be of potential therapeutic value in the treatment or prevention of metabolic disorders. More clinical trials in controlled conditions are needed, notably taking greater account of circadian rhythmicity.


Assuntos
Ritmo Circadiano , Homeostase , Melatonina , Melatonina/metabolismo , Animais , Humanos , Ritmo Circadiano/fisiologia , Homeostase/fisiologia , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/fisiologia , Glândula Pineal/metabolismo
2.
Eur J Neurosci ; 53(11): 3612-3620, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33840135

RESUMO

The duration of daytime light phase (photoperiod) controls reproduction in seasonal mammals. Syrian hamsters are sexually active when exposed to long photoperiod, while gonadal atrophy is observed after exposure to short photoperiod. The photorefractory period, or photorefractoriness, is a particular state of spontaneous recrudescence of sexual activity that occurs after a long-term exposure to short photoperiod. Expression of core clock genes in the master circadian clock contained in the suprachiasmatic nuclei depends on photoperiodic conditions. Interestingly, the expression of the Clock gene is also modified in photorefractory Syrian hamsters. Since melatonin and testosterone levels in seasonal species are dependent on photoperiod, photoperiodic variations of Clock mRNA levels in the suprachiasmatic clock could be a consequence of these hormonal changes. To test this hypothesis, we analysed the effects of pinealectomy on Clock mRNA changes due to long to short photoperiod transition and of gonadectomy on Clock mRNA levels in photorefractory period. Our data show that the suprachiasmatic integration of the short photoperiod (assessed by a rhythmic expression profile of Clock) is independent of the presence of melatonin. Furthermore, constitutively low expression of Clock observed during the photorefractory period does not require the presence of either melatonin or testosterone. However, we show that both hormones provide positive feedback on average levels of Clock expression. Thus, our data support the hypothesis that daily variations of Clock levels in the suprachiasmatic nuclei are influenced by photoperiodic changes and the time spent in short photoperiod, independently of seasonal modifications of melatonin or testosterone levels.


Assuntos
Melatonina , Fotoperíodo , Animais , Castração , Ritmo Circadiano , Cricetinae , Expressão Gênica , Mesocricetus , Pinealectomia , Núcleo Supraquiasmático
3.
Horm Behav ; 136: 105076, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34634697

RESUMO

Melatonin, a major signal of the circadian system, is also involved in brain functions such as learning and memory. Chronic melatonin treatment is known to improve memory performances, but the respective contribution of its central receptors, MT1 and MT2, is still unclear. Here, we used new single receptor deficient MT1-/- and MT2-/- mice to investigate the contribution of each receptor in the positive effect of chronic melatonin treatment on long-term recognition memory. The lack of MT2 receptor precluded memory-enhancing effect of melatonin in the object recognition task and to a lesser extent in the object location task, whereas the lack of MT1 receptor mitigated its effect in the object location task only. Our findings support a key role of MT2 in mediating melatonin's beneficial action on long-term object recognition memory, whereas MT1 may contribute to the effect on object location memory.


Assuntos
Melatonina , Animais , Cognição , Masculino , Melatonina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Receptor MT1 de Melatonina/genética , Receptor MT2 de Melatonina/fisiologia
4.
J Pineal Res ; 68(3): e12634, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32011000

RESUMO

In desert areas, mammals such as camel and goat are exposed to harsh environmental conditions. The ambient temperature (Ta) cycles have been shown to entrain the circadian clock in the camel. In the present work, we assumed that, in the goat living in a desert biotope, Ta cycles would have the same synchronizing effect on the central clock. Therefore, the effects of Ta cycles on body temperature (Tb), locomotor activity (LA) and melatonin (Mel) rhythms as outputs of the master circadian clock have been studied. The study was performed on bucks kept first under constant conditions of total darkness (DD) and constant Ta, then maintained under DD conditions but exposed to Ta cycles with heat period during subjective day and cold period during subjective night. Finally, the Ta cycles were reversed with highest temperatures during the subjective night and the lowest temperatures during the subjective day. Under constant conditions, the circadian rhythms of Tb and LA were free running with an endogenous period of 25.3 and 25.0 hours, respectively. Ta cycles entrained the rhythms of Tb and LA to a period of exactly 24.0 hours; while when reversed, the Ta cycles led to an inversion of Tb and LA rhythms. Similarly, Ta cycles were also able to entrain Mel rhythm, by adjusting its secretion to the cooling phase before and after Ta cycles inversion. All together, these results show that the Ta cycles entrain the master circadian clock in the goat.


Assuntos
Temperatura Corporal/fisiologia , Relógios Circadianos/fisiologia , Cabras/fisiologia , Locomoção/fisiologia , Melatonina/metabolismo , Animais , Comportamento Animal , Clima , Masculino , Temperatura
5.
J Pineal Res ; 67(1): e12575, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30937953

RESUMO

Melatonin (MLT) exerts its physiological effects principally through two high-affinity membrane receptors MT1 and MT2. Understanding the exact mechanism of MLT action necessitates the use of highly selective agonists/antagonists to stimulate/inhibit a given MLT receptor. The respective distribution of MT1 and MT2 within the CNS and elsewhere is controversial, and here we used a "knock-in" strategy replacing MT1 or MT2 coding sequences with a LacZ reporter. The data show striking differences in the distribution of MT1 and MT2 receptors in the mouse brain: whereas the MT1 subtype was expressed in very few structures (notably including the suprachiasmatic nucleus and pars tuberalis), MT2 subtype receptors were identified within numerous brain regions including the olfactory bulb, forebrain, hippocampus, amygdala and superior colliculus. Co-expression of the two subtypes was observed in very few structures, and even within these areas they were rarely present in the same individual cell. In conclusion, the expression and distribution of MT2 receptors are much more widespread than previously thought, and there is virtually no correspondence between MT1 and MT2 cellular expression. The precise phenotyping of cells/neurons containing MT1 or MT2 receptor subtypes opens new perspectives for the characterization of links between MLT brain targets, MLT actions and specific MLT receptor subtypes.


Assuntos
Encéfalo/metabolismo , Regulação da Expressão Gênica , Melatonina/metabolismo , Receptor MT1 de Melatonina/biossíntese , Receptor MT2 de Melatonina/biossíntese , Animais , Encéfalo/citologia , Técnicas de Introdução de Genes , Camundongos , Camundongos Knockout , Receptor MT1 de Melatonina/genética , Receptor MT2 de Melatonina/genética
6.
FASEB J ; 29(12): 4794-803, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26260033

RESUMO

Chronic jet lag or shift work is deleterious to human metabolic health, in that such circadian desynchronization is associated with being overweight and the prevalence of altered glucose metabolism. Similar metabolic changes are observed with age, suggesting that chronic jet lag and accelerated cell aging are intimately related, but the association remains to be determined. We addressed whether jet lag induces metabolic and cell aging impairments in young grass rats (2-3 mo old), using control old grass rats (12-18 mo old) as an aging reference. Desynchronized young and control old subjects had impaired glucose tolerance (+60 and +280%) when compared with control young animals. Despite no significant variation in liver DNA damage, shorter telomeres were characterized, not only in old animal liver cells (-18%), but also at an intermediate level in desynchronized young rats (-9%). The same pattern was found for deacetylase sirtuin (SIRT)-1 (-57 and -29%), confirming that jet-lagged young rats have an intermediate aging profile. Our data indicate that an experimental circadian desynchronization in young animals is associated with a precocious aging profile based on 3 well-known markers, as well as a prediabetic phenotype. Such chronic jet lag-induced alterations observed in a diurnal species constitute proof of principle of the need to develop preventive treatments in jet-lagged persons and shift workers.


Assuntos
Senescência Celular , Ritmo Circadiano , Muridae/fisiologia , Animais , Glicemia/análise , Corticosterona/sangue , Teste de Tolerância a Glucose , Insulina/sangue , Masculino , Encurtamento do Telômero
7.
Cell Mol Life Sci ; 72(11): 2237-48, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25563487

RESUMO

As a peripheral tissue localized at the interface between internal and external environments, skin performs functions which are critical for the preservation of body homeostasis, in coordination with environmental changes. Some of these functions undergo daily variations, such as temperature or water loss, suggesting the presence of time-keeping mechanisms. Rhythmic functions are controlled by a network of circadian oscillators present virtually in every cell and coordinated by the central clock located in the suprachiasmatic nuclei. At the molecular level, circadian rhythms are generated by conserved transcriptional-translational feedback loops involving several clock genes, among which Per1 and Per2 play a central role. Here we characterize clock activity in skin of the transgenic Per1-luciferase rat during postnatal development and adulthood, by real-time recording of bioluminescence in explants and primary dermal fibroblasts, and report marked transformation in circadian properties, from early life to aging. Using primary dermal fibroblast cultures we provide evidence that melatonin treatment phase dependently increases the amplitude of circadian oscillations and that ambient temperature impacts on their period, with slight overcompensation. Together, these findings demonstrate that skin contains a self-sustained circadian clock undergoing age-dependent changes. Dermal fibroblasts, one of the major skin cell types, also exhibit robust, yet specific, circadian rhythmicity which can be fine-tuned by both internal (melatonin) and external (temperature) factors.


Assuntos
Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Melatonina/farmacologia , Proteínas Circadianas Period/genética , Pele/metabolismo , Envelhecimento/fisiologia , Animais , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Humanos , Medições Luminescentes , Masculino , Ratos , Ratos Transgênicos , Pele/citologia , Temperatura
8.
Am J Physiol Regul Integr Comp Physiol ; 304(11): R1044-52, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23485867

RESUMO

In mammals the light-dark (LD) cycle is known to be the major cue to synchronize the circadian clock. In arid and desert areas, the camel (Camelus dromedarius) is exposed to extreme environmental conditions. Since wide oscillations of ambient temperature (Ta) are a major factor in this environment, we wondered whether cyclic Ta fluctuations might contribute to synchronization of circadian rhythms. The rhythm of body temperature (Tb) was selected as output of the circadian clock. After having verified that Tb is synchronized by the LD and free runs in continuous darkness (DD), we submitted the animals to daily cycles of Ta in LL and in DD. In both cases, the Tb rhythm was entrained to the cycle of Ta. On a 12-h phase shift of the Ta cycle, the mean phase shift of the Tb cycle ranged from a few hours in LD (1 h by cosinor, 4 h from curve peaks) to 7-8 h in LL and 12 h in DD. These results may reflect either true synchronization of the central clock by Ta daily cycles or possibly a passive effect of Ta on Tb. To resolve the ambiguity, melatonin rhythmicity was used as another output of the clock. In DD melatonin rhythms were also entrained by the Ta cycle, proving that the daily Ta cycle is able to entrain the circadian clock of the camel similar to photoperiod. By contrast, in the presence of a LD cycle the rhythm of melatonin was modified by the Ta cycle in only 2 (or 3) of 7 camels: in these specific conditions a systematic effect of Ta on the clock could not be evidenced. In conclusion, depending on the experimental conditions (DD vs. LD), the daily Ta cycle can either act as a zeitgeber or not.


Assuntos
Temperatura Corporal/fisiologia , Camelus/fisiologia , Ritmo Circadiano/fisiologia , Animais , Relógios Biológicos , Sinais (Psicologia) , Escuridão , Interpretação Estatística de Dados , Meio Ambiente , Feminino , Luz , Iluminação , Melatonina/sangue , Fotoperíodo , Termogênese/fisiologia
9.
FASEB J ; 26(8): 3321-35, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22562834

RESUMO

Mutations of clock genes can lead to diabetes and obesity. REV-ERBα, a nuclear receptor involved in the circadian clockwork, has been shown to control lipid metabolism. To gain insight into the role of REV-ERBα in energy homeostasis in vivo, we explored daily metabolism of carbohydrates and lipids in chow-fed, unfed, or high-fat-fed Rev-erbα(-/-) mice and their wild-type littermates. Chow-fed Rev-erbα(-/-) mice displayed increased adiposity (2.5-fold) and mild hyperglycemia (∼10%) without insulin resistance. Indirect calorimetry indicates that chow-fed Rev-erbα(-/-) mice utilize more fatty acids during daytime. A 24-h nonfeeding period in Rev-erbα(-/-) animals favors further fatty acid mobilization at the expense of glycogen utilization and gluconeogenesis, without triggering hypoglycemia and hypothermia. High-fat feeding in Rev-erbα(-/-) mice amplified metabolic disturbances, including expression of lipogenic factors. Lipoprotein lipase (Lpl) gene, critical in lipid utilization/storage, is triggered in liver at night and constitutively up-regulated (∼2-fold) in muscle and adipose tissue of Rev-erbα(-/-) mice. We show that CLOCK, up-regulated (2-fold) at night in Rev-erbα(-/-) mice, can transactivate Lpl. Thus, overexpression of Lpl facilitates muscle fatty acid utilization and contributes to fat overload. This study demonstrates the importance of clock-driven Lpl expression in energy balance and highlights circadian disruption as a potential cause for the metabolic syndrome.


Assuntos
Proteínas CLOCK/fisiologia , Metabolismo dos Carboidratos/fisiologia , Metabolismo Energético/fisiologia , Metabolismo dos Lipídeos/fisiologia , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/fisiologia , Animais , Ritmo Circadiano/fisiologia , Dieta Hiperlipídica , Feminino , Gluconeogênese/fisiologia , Homeostase/fisiologia , Resistência à Insulina/fisiologia , Lipase Lipoproteica/metabolismo , Glicogênio Hepático/metabolismo , Masculino , Camundongos , Atividade Motora , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/deficiência
10.
Horm Behav ; 64(4): 611-7, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24005184

RESUMO

Animals have to adapt to seasonal variations in food resources and temperature. Hibernation is one of the most efficient means used by animals to cope with harsh winter conditions, wherein survival is achieved through a significant decrease in energy expenditure. The hibernation period is constituted by a succession of torpor bouts (hypometabolism and decrease in body temperature) and periodic arousals (eumetabolism and euthermia). Some species feed during these periodic arousals, and thus show different metabolic adaptations to fat-storing species that fast throughout the hibernation period. Our study aims to define these metabolic adaptations, including hormone (insulin, glucagon, leptin, adiponectin, GLP-1, GiP) and metabolite (glucose, free fatty acids, triglycerides, urea) profiles together with body composition adjustments. Syrian hamsters were exposed to varied photoperiod and temperature conditions mimicking different phases of the hibernation cycle: a long photoperiod at 20 °C (LP20 group), a short photoperiod at 20 °C (SP20 group), and a short photoperiod at 8 °C (SP8). SP8 animals were sampled either at the beginning of a torpor bout (Torpor group) or at the beginning of a periodic arousal (Arousal group). We show that fat store mobilization in hamsters during torpor bouts is associated with decreased circulating levels of glucagon, insulin, leptin, and an increase in adiponectin. Refeeding during periodic arousals results in a decreased free fatty acid plasma concentration and an increase in glycemia and plasma incretin concentrations. Reduced incretin and increased adiponectin levels are therefore in accordance with the changes in nutrient availability and feeding behavior observed during the hibernation cycle of Syrian hamsters.


Assuntos
Metabolismo Energético , Hibernação/fisiologia , Hormônios/sangue , Mesocricetus/fisiologia , Adipocinas/sangue , Animais , Composição Corporal/fisiologia , Corticosterona/sangue , Cricetinae , Incretinas/sangue , Masculino , Hormônios Pancreáticos/sangue , Fotoperíodo , Reprodução/fisiologia , Estações do Ano
11.
Cell Mol Life Sci ; 69(19): 3329-39, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22627494

RESUMO

Skin acts as a barrier between the environment and internal organs and performs functions that are critical for the preservation of body homeostasis. In mammals, a complex network of circadian clocks and oscillators adapts physiology and behavior to environmental changes by generating circadian rhythms. These rhythms are induced in the central pacemaker and peripheral tissues by similar transcriptional-translational feedback loops involving clock genes. In this work, we investigated the presence of functional oscillators in the human skin by studying kinetics of clock gene expression in epidermal and dermal cells originating from the same donor and compared their characteristics. Primary cultures of fibroblasts, keratinocytes, and melanocytes were established from an abdominal biopsy and expression of clock genes following dexamethasone synchronization was assessed by qPCR. An original mathematical method was developed to analyze simultaneously up to nine clock genes. By fitting the oscillations to a common period, the phase relationships of the genes could be determined accurately. We thereby show the presence of functional circadian machinery in each cell type. These clockworks display specific periods and phase relationships between clock genes, suggesting regulatory mechanisms that are particular to each cell type. Taken together, our data demonstrate that skin has a complex circadian organization. Oscillators are present not only in fibroblasts but also in epidermal keratinocytes and melanocytes and are likely to act in coordination to drive rhythmic functions within the skin.


Assuntos
Relógios Circadianos/genética , Fibroblastos/fisiologia , Regulação da Expressão Gênica , Queratinócitos/fisiologia , Melanócitos/fisiologia , Pele/citologia , Proteínas CLOCK/genética , Células Cultivadas , Humanos
12.
J Physiol ; 590(13): 3155-68, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22570380

RESUMO

Caloric restriction attenuates the onset of a number of pathologies related to ageing. In mammals, circadian rhythms, controlled by the hypothalamic suprachiasmatic (SCN) clock, are altered with ageing. Although light is the main synchronizer for the clock, a daily hypocaloric feeding (HF) may also modulate the SCN activity in nocturnal rodents. Here we report that a HF also affects behavioural, physiological and molecular circadian rhythms of the diurnal rodent Arvicanthis ansorgei. Under constant darkness HF, but not normocaloric feeding (NF), entrains circadian behaviour. Under a light­dark cycle, HF at midnight led to phase delays of the rhythms of locomotor activity and plasma corticosterone. Furthermore, Per2 and vasopressin gene oscillations in the SCN were phase delayed in HF Arvicanthis compared with animals fed ad libitum. Moreover, light-induced expression of Per genes in the SCN was modified in HF Arvicanthis, despite a non-significant effect on light-induced behavioural phase delays. Together, our data show that HF affects the circadian system of the diurnal rodent Arvicanthis ansorgei differentially from nocturnal rodents. The Arvicanthis model has relevance for the potential use of HF to manipulate circadian rhythms in diurnal species including humans.


Assuntos
Restrição Calórica , Relógios Circadianos/fisiologia , Núcleo Supraquiasmático/fisiologia , Animais , Comportamento Animal , Glicemia/análise , Expressão Gênica , Masculino , Proteínas do Tecido Nervoso/genética , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Proteínas Circadianas Period/genética , Roedores , Corrida , Vasopressinas/genética
13.
Chronobiol Int ; 39(1): 129-150, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34965824

RESUMO

The dromedary camel (Camelus dromedarius) is a large ungulate that copes well with the xeric environment of the desert. Its peculiar adaptation to heat and dehydration is well-known. However, its behavior and general activity is far from being completely understood. The present study was carried out to investigate the ecological effect of the various seasons on the locomotor activity (LA) rhythm and diurnal activity of this species. Six adult female camels were maintained under mesic semi-natural conditions of the environment during four periods of 10 days in each season: autumn, winter, spring and summer. In addition, three female camels were used to test the effect of rain on the LA rhythm during a period of 18 days during the winter. The animal's LA was recorded using the locomotion scoring method. Camels displayed a clear 24.0h LA rhythm throughout the four seasons. Activity was intense during Day-time (6-22 fold higher in comparison to night) and dropped or completely disappeared during nighttime. Mean daytime total activity was significantly higher in the summer as compared to winter. Regardless of the season, the active phase in camels coincided with the time of the photophase and thermophase. Furthermore, the daily duration of the time spent active was directly correlated to the seasonal changes of photoperiod. The diurnal activity remained unchanged over the four seasons. For each season, the start and the end of the active phase were synchronized with the onset of sunrise and sunset. At these time periods, temperature remained incredibly stable with a change ranging from 0.002 to 0.210°C; whereas, changes of light intensity were greater and faster with a change from 0.1 to 600 lux representing a variation of 3215-7192 fold in just 25-29 min. Rainfall affected the pattern of the LA rhythm with occurrence of abnormal nocturnal activity during nighttime disturbing nocturnal rest and sleep. Here we show that the dromedary camel exhibits significant seasonal changes of its activity within daylight hours. However, the diurnal pattern remains unchanged regardless of the season; whereas, abnormal nocturnal activity is observed during periods of rain. The activity onset and offset in this species seems to be primarily driven by the changes in light intensity at dusk and dawn.


Assuntos
Camelus , Ritmo Circadiano , Animais , Feminino , Locomoção , Fotoperíodo , Estações do Ano
14.
Sleep ; 45(8)2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35512227

RESUMO

STUDY OBJECTIVES: To investigate sleep patterns in the camel by combining behavioral and polysomnography (PSG) methods. METHODS: A noninvasive PSG study was conducted over four nights on four animals. Additionally, video recordings were used to monitor the sleep behaviors associated with different vigilance states. RESULTS: During the night, short periods of sporadic sleep-like behavior corresponding to a specific posture, sternal recumbency (SR) with the head lying down on the ground, were observed. The PSG results showed rapid shifts between five vigilance states, including wakefulness, drowsiness, rapid eye movement (REM) sleep, non-REM (NREM) sleep, and rumination. The camels typically slept only 1.7 hours per night, subdivided into 0.5 hours of REM sleep and 1.2 hours of NREM sleep. Camels spent most of the night being awake (2.3 hours), ruminating (2.4 hours), or drowsing (1.9 hours). Various combinations of transitions between the different vigilance states were observed, with a notable transition into REM sleep directly from drowsiness (9%) or wakefulness (4%). Behavioral postures were found to correlate with PSG vigilance states, thereby allowing a reliable prediction of the sleep stage based on SR and the head position (erected, motionless, or lying down on the ground). Notably, 100% of REM sleep occurred during the Head Lying Down-SR posture. CONCLUSIONS: The camel is a diurnal species with a polyphasic sleep pattern at night. The best correlation between PSG and ethogram data indicates that sleep duration can be predicted by the behavioral method, provided that drowsiness is considered a part of sleep.


Assuntos
Camelus , Eletroencefalografia , Animais , Eletroencefalografia/métodos , Polissonografia/métodos , Sono , Fases do Sono , Vigília
15.
J Neurosci ; 30(5): 1894-904, 2010 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-20130198

RESUMO

The cerebellum participates in motor coordination as well as in numerous cerebral processes, including temporal discrimination. Animals can predict daily timing of food availability, as manifested by food-anticipatory activity under restricted feeding. By studying ex vivo clock gene expression by in situ hybridization and recording in vitro Per1-luciferase bioluminescence, we report that the cerebellum contains a circadian oscillator sensitive to feeding cues (i.e., whose clock gene oscillations are shifted in response to restricted feeding). Food-anticipatory activity was markedly reduced in mice injected intracerebroventricularly with an immunotoxin that depletes Purkinje cells (i.e., OX7-saporin). Mice bearing the hotfoot mutation (i.e., Grid2(ho/ho)) have impaired cerebellar circuitry and mild ataxic phenotype. Grid2(ho/ho) mice fed ad libitum showed regular behavioral rhythms and day-night variations of clock gene expression in the hypothalamus and cerebellum. When challenged with restricted feeding, however, Grid2(ho/ho) mice did not show any food-anticipatory rhythms, nor timed feeding-induced changes in cerebellar clock gene expression. In hypothalamic arcuate and dorsomedial nuclei, however, shifts in Per1 expression in response to restricted feeding were similar in cerebellar mutant and wild-type mice. Furthermore, plasma corticosterone and metabolites before mealtime did not differ between cerebellar mutant and wild-type mice. Together, these data define a role for the cerebellum in the circadian timing network and indicate that the cerebellar oscillator is required for anticipation of mealtime.


Assuntos
Regulação do Apetite/fisiologia , Cerebelo/fisiologia , Ritmo Circadiano/genética , Animais , Proteínas CLOCK/metabolismo , Comportamento Alimentar/fisiologia , Imuno-Histoquímica , Luciferases/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Atividade Motora/fisiologia , Mutação , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Proteínas Circadianas Period/metabolismo , Células de Purkinje/metabolismo , Ratos , Ratos Transgênicos
16.
J Physiol ; 589(Pt 9): 2287-300, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21486797

RESUMO

In mammals, the master clock in the suprachiasmatic nucleus (SCN) of the hypothalamus is composed of numerous synchronized oscillating cells that drive daily behavioural and physiological processes. Several entrainment pathways, afferent inputs to the SCN with their neurotransmitter and neuromodulator systems, can reset the circadian system regularly and also modulate neuronal activity within the SCN. In the present study, we investigated the function of the inhibitory neurotransmitter glycine on neuronal activity in the mouse SCN and on resetting of the circadian clock. The effects of glycine on the electrical activity of SCN cells from C57Bl/6 mice were studied either by patch-clamp recordings from acute brain slices or by long-term recordings from organotypic brain slices using multi-microelectrode arrays(MEA). Voltage-clamp recordings confirmed the existence of glycine-induced, chloride-selective currents in SCN neurons. These currents were reversibly suppressed by strychnine, phenylbenzeneω-phosphono-α-amino acid (PMBA) or ginkgolide B, selective blockers of glycine receptors(GlyRs). Long-term recordings of the spontaneous activity of SCN neurons revealed that glycine application induces a phase advance during the subjective day and a phase delay during the early subjective night. Both effects were suppressed by strychnine or by PMBA. These results suggest that glycine is able to modulate circadian activity by acting directly on its specific receptors in SCN neurons.


Assuntos
Relógios Biológicos , Ritmo Circadiano , Glicina/metabolismo , Neurônios/metabolismo , Receptores de Glicina/metabolismo , Transdução de Sinais , Núcleo Supraquiasmático/metabolismo , Potenciais de Ação , Análise de Variância , Animais , Relógios Biológicos/efeitos dos fármacos , Cloretos/metabolismo , Ritmo Circadiano/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Microeletrodos , Inibição Neural , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp , Receptores de Glicina/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Núcleo Supraquiasmático/citologia , Núcleo Supraquiasmático/efeitos dos fármacos , Fatores de Tempo
17.
Eur J Neurosci ; 33(7): 1308-17, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21299657

RESUMO

In the Syrian hamster dorsal and median raphé nuclei, the tryptophan hydroxylase 2 gene (tph2), which codes the rate-limiting enzyme of serotonin synthesis, displays daily variations in its expression in animals entrained to a long but not to a short photoperiod. The present study aimed to assess the role of glucocorticoids in the nycthemeral and photoperiodic regulation of daily tph2 expression. In hamsters held in long photoperiod from birth, after adrenalectomy and glucocorticoid implants the suppression of glucocorticoid rhythms induced an abolition of the daily variations in tph2-mRNA concentrations, a decrease in the amplitude of body temperature rhythms and an increase in testosterone levels. All these effects were reversed after experimental restoration of a clear daily rhythm in the plasma glucocorticoid concentrations. We conclude that the photoperiod-dependent rhythm of glucocorticoids is the main regulator of tph2 daily expression.


Assuntos
Ritmo Circadiano/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Glucocorticoides/farmacologia , Fotoperíodo , Isoformas de Proteínas/genética , Triptofano Hidroxilase/genética , Adrenalectomia , Animais , Relógios Biológicos/efeitos dos fármacos , Relógios Biológicos/fisiologia , Temperatura Corporal , Cricetinae , Hibridização In Situ , Masculino , Mesocricetus , Orquiectomia , Isoformas de Proteínas/metabolismo , Núcleos da Rafe/efeitos dos fármacos , Núcleos da Rafe/enzimologia , Núcleos da Rafe/fisiologia , Testosterona/sangue , Triptofano Hidroxilase/metabolismo
18.
Handb Clin Neurol ; 179: 331-343, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34225973

RESUMO

Melatonin (MLT), secreted during the night by the pineal gland, is an efferent hormonal signal of the master circadian clock located in the suprachiasmatic nucleus (SCN). Consequently, it is a reliable phase marker of the SCN clock. If one defines as "chronobiotic," a drug able to influence the phase and/or the period of the circadian clock, MLT is a very potent one. The most convincing data obtained so far come from studies on totally blind individuals. Exogenous MLT administered daily entrains the sleep-wake cycle of these individuals to a 24-h cycle. MLT, however, is not essential to sleep. In nocturnally, active mammals, MLT is released during the night concomitantly with the daily period of wakefulness. Therefore, MLT cannot be simply considered as a sleep hormone, but rather as a signal of darkness. Its role in the circadian system is to reinforce nighttime physiology, including timing of the sleep-wake cycle and other circadian rhythms. MLT exerts its effects on the sleep cycle especially by a direct action on the master circadian clock. The sleep-wake cycle is depending not only on the circadian clock but also on an orchestrated network of different centers in the brain. Thus, the control of sleep-wake rhythm might be explained by a parallel and concomitant action of MLT on the master clock (chronobiotic effect) and on sleep-related structures within the brain. MLT acts through two high-affinity membrane receptors (MT1 and MT2) with striking differences in their distribution pattern. MLT is a powerful synchronizer of human circadian rhythms, thus justifying the use of MLT and MLT agonists in clinical medicine as pharmacological tools to manipulate the sleep-wake cycle, and to treat sleep disorders and other circadian disorders. Available MLT analogs/drugs are all nonspecific MT1/MT2 agonists. The development of new ligands which are highly selectivity for each subtype is clearly a new challenge for the field and will be at the root of new therapeutic agents for curing specific pathologies, including sleep disorders.


Assuntos
Melatonina , Animais , Ritmo Circadiano , Humanos , Sono , Núcleo Supraquiasmático , Vigília
19.
J Neurochem ; 112(6): 1489-99, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20067576

RESUMO

Under special restricted feeding conditions the mammalian circadian clock, contained in the hypothalamic suprachiasmatic nucleus (SCN), can be entrained by food. During food restriction, hungry animals are very motivated to obtain food. This motivational state could be a key component in altering the SCN timing by feeding. In order to comprehend how hedonic signals of food affect the SCN clock, we evaluated the effects of a daily palatable snack on the behavioural rhythm of mice fed ad libitum with regular food, and housed under constant darkness conditions. As light synchronization of the SCN is modulated by feeding/metabolic cues, the effects of a palatable meal coupled to a light pulse were tested on behavioural and molecular rhythms. A daily palatable snack entrained behavioural rhythms of mice in constant darkness conditions. Furthermore, palatable meal access at the activity onset reduced light-induced behavioural phase-delays and Period genes expression in the SCN. In addition, an increase in the dopamine content and Period genes expression in the forebrain of mice was observed, concomitant with a c-FOS activation in dopaminergic and orexinergic neurons, suggesting that the effects of a palatable snack on the SCN clock are mediated by the reward/arousal central systems. In conclusion, this study establishes an underlying sensitivity of the master circadian clock to changes in motivational states related to palatable food intake.


Assuntos
Ritmo Circadiano/fisiologia , Alimentos , Recompensa , Núcleo Supraquiasmático/fisiologia , Análise de Variância , Animais , Peso Corporal/fisiologia , Contagem de Células/métodos , Cromatografia Líquida de Alta Pressão/métodos , Ingestão de Alimentos/fisiologia , Eletroquímica/métodos , Comportamento Alimentar/fisiologia , Privação de Alimentos , Preferências Alimentares/fisiologia , Regulação da Expressão Gênica/fisiologia , Locomoção/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurotransmissores/metabolismo , Proteínas Oncogênicas v-fos/metabolismo , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Esquema de Reforço , Núcleo Supraquiasmático/citologia , Tirosina 3-Mono-Oxigenase/metabolismo
20.
Neuro Endocrinol Lett ; 31(6): 738-42, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21196916

RESUMO

OBJECTIVES AND DESIGN: In European hamsters a circannual clock drives the seasonal changes in the reproductive state. Its resetting by photoperiod is clearly phase dependent. In mid subjective winter a 1-month pulse of long photoperiod (LP) advances the onset of the reproductive phase of animals maintained in constant short photoperiod (SP) by up to 1.5 months. The present study investigated whether shorter pulses, i.e. 8, 4 or 2 days LP-pulses are still effective to phase shift the circannual rhythm. MAIN FINDINGS: All pulses induced gonadal development after a similar time relative to the offset of the pulse and earlier than in the control group. Thus, they all shared a similar effectiveness. CONCLUSIONS: In European hamsters a very brief LP-pulse can phase shift the reproductive rhythm but its strength is not determined by its duration at least not in the tested range.


Assuntos
Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Fotoperíodo , Reprodução/fisiologia , Estações do Ano , Animais , Cricetinae , Masculino , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA