Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 569(7757): E9, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31073227

RESUMO

Change history: In this Letter, the y-axis values in Fig. 3f should go from 4 to -8 (rather than from 4 to -4), the y-axis values in Fig. 3h should appear next to the major tick marks (rather than the minor ticks), and in Fig. 1b, the arrows at the top and bottom of the electron-scale current sheet were going in the wrong direction; these errors have been corrected online.

2.
Nature ; 576(7786): 237-242, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31802007

RESUMO

During the solar minimum, when the Sun is at its least active, the solar wind1,2 is observed at high latitudes as a predominantly fast (more than 500 kilometres per second), highly Alfvénic rarefied stream of plasma originating from deep within coronal holes. Closer to the ecliptic plane, the solar wind is interspersed with a more variable slow wind3 of less than 500 kilometres per second. The precise origins of the slow wind streams are less certain4; theories and observations suggest that they may originate at the tips of helmet streamers5,6, from interchange reconnection near coronal hole boundaries7,8, or within coronal holes with highly diverging magnetic fields9,10. The heating mechanism required to drive the solar wind is also unresolved, although candidate mechanisms include Alfvén-wave turbulence11,12, heating by reconnection in nanoflares13, ion cyclotron wave heating14 and acceleration by thermal gradients1. At a distance of one astronomical unit, the wind is mixed and evolved, and therefore much of the diagnostic structure of these sources and processes has been lost. Here we present observations from the Parker Solar Probe15 at 36 to 54 solar radii that show evidence of slow Alfvénic solar wind emerging from a small equatorial coronal hole. The measured magnetic field exhibits patches of large, intermittent reversals that are associated with jets of plasma and enhanced Poynting flux and that are interspersed in a smoother and less turbulent flow with a near-radial magnetic field. Furthermore, plasma-wave measurements suggest the existence of electron and ion velocity-space micro-instabilities10,16 that are associated with plasma heating and thermalization processes. Our measurements suggest that there is an impulsive mechanism associated with solar-wind energization and that micro-instabilities play a part in heating, and we provide evidence that low-latitude coronal holes are a key source of the slow solar wind.

3.
Nature ; 557(7704): 202-206, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29743689

RESUMO

Magnetic reconnection in current sheets is a magnetic-to-particle energy conversion process that is fundamental to many space and laboratory plasma systems. In the standard model of reconnection, this process occurs in a minuscule electron-scale diffusion region1,2. On larger scales, ions couple to the newly reconnected magnetic-field lines and are ejected away from the diffusion region in the form of bi-directional ion jets at the ion Alfvén speed3-5. Much of the energy conversion occurs in spatially extended ion exhausts downstream of the diffusion region 6 . In turbulent plasmas, which contain a large number of small-scale current sheets, reconnection has long been suggested to have a major role in the dissipation of turbulent energy at kinetic scales7-11. However, evidence for reconnection plasma jetting in small-scale turbulent plasmas has so far been lacking. Here we report observations made in Earth's turbulent magnetosheath region (downstream of the bow shock) of an electron-scale current sheet in which diverging bi-directional super-ion-Alfvénic electron jets, parallel electric fields and enhanced magnetic-to-particle energy conversion were detected. Contrary to the standard model of reconnection, the thin reconnecting current sheet was not embedded in a wider ion-scale current layer and no ion jets were detected. Observations of this and other similar, but unidirectional, electron jet events without signatures of ion reconnection reveal a form of reconnection that can drive turbulent energy transfer and dissipation in electron-scale current sheets without ion coupling.

4.
Geophys Res Lett ; 49(9): e2021GL096986, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35864893

RESUMO

We report observations of reconnection exhausts in the Heliospheric Current Sheet (HCS) during Parker Solar Probe Encounters 08 and 07, at 16 R s and 20 R s , respectively. Heliospheric current sheet (HCS) reconnection accelerated protons to almost twice the solar wind speed and increased the proton core energy by a factor of ∼3, due to the Alfvén speed being comparable to the solar wind flow speed at these near-Sun distances. Furthermore, protons were energized to super-thermal energies. During E08, energized protons were found to have leaked out of the exhaust along separatrix field lines, appearing as field-aligned energetic proton beams in a broad region outside the HCS. Concurrent dropouts of strahl electrons, indicating disconnection from the Sun, provide further evidence for the HCS being the source of the beams. Around the HCS in E07, there were also proton beams but without electron strahl dropouts, indicating that their origin was not the local HCS reconnection exhaust.

5.
Phys Rev Lett ; 127(15): 155101, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34677989

RESUMO

Observations in Earth's turbulent magnetosheath downstream of a quasiparallel bow shock reveal a prevalence of electron-scale current sheets favorable for electron-only reconnection where ions are not coupled to the reconnecting magnetic fields. In small-scale turbulence, magnetic structures associated with intense current sheets are limited in all dimensions. And since the coupling of ions are constrained by a minimum length scale, the dynamics of electron reconnection is likely to be 3D. Here, both 2D and 3D kinetic particle-in-cell simulations are used to investigate electron-only reconnection, focusing on the reconnection rate and associated electron flows. A new form of 3D electron-only reconnection spontaneously develops where the magnetic X-line is localized in the out-of-plane (z) direction. The consequence is an enhancement of the reconnection rate compared with two dimensions, which results from differential mass flux out of the diffusion region along z, enabling a faster inflow velocity and thus a larger reconnection rate. This outflow along z is due to the magnetic tension force in z just as the conventional exhaust tension force, allowing particles to leave the diffusion region efficiently along z unlike the 2D configuration.

6.
Anaesthesia ; 76(2): 182-188, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33047327

RESUMO

Aerosol-generating procedures such as tracheal intubation and extubation pose a potential risk to healthcare workers because of the possibility of airborne transmission of infection. Detailed characterisation of aerosol quantities, particle size and generating activities has been undertaken in a number of simulations but not in actual clinical practice. The aim of this study was to determine whether the processes of facemask ventilation, tracheal intubation and extubation generate aerosols in clinical practice, and to characterise any aerosols produced. In this observational study, patients scheduled to undergo elective endonasal pituitary surgery without symptoms of COVID-19 were recruited. Airway management including tracheal intubation and extubation was performed in a standard positive pressure operating room with aerosols detected using laser-based particle image velocimetry to detect larger particles, and spectrometry with continuous air sampling to detect smaller particles. A total of 482,960 data points were assessed for complete procedures in three patients. Facemask ventilation, tracheal tube insertion and cuff inflation generated small particles 30-300 times above background noise that remained suspended in airflows and spread from the patient's facial region throughout the confines of the operating theatre. Safe clinical practice of these procedures should reflect these particle profiles. This adds to data that inform decisions regarding the appropriate precautions to take in a real-world setting.


Assuntos
Aerossóis , Extubação , Intubação Intratraqueal , Salas Cirúrgicas , Manuseio das Vias Aéreas , Anestesia por Inalação , Monitoramento Ambiental , Humanos , Tamanho da Partícula , Equipamento de Proteção Individual , Respiração Artificial
7.
Phys Rev Lett ; 125(26): 265102, 2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33449730

RESUMO

Magnetic reconnection is of fundamental importance to plasmas because of its role in releasing and repartitioning stored magnetic energy. Previous results suggest that this energy is predominantly released as ion enthalpy flux along the reconnection outflow. Using Magnetospheric Multiscale data we find the existence of very significant electron energy flux densities in the vicinity of the magnetopause electron dissipation region, orthogonal to the ion energy outflow. These may significantly impact models of electron transport, wave generation, and particle acceleration.

9.
Geophys Res Lett ; 45(10): 4569-4577, 2018 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31031447

RESUMO

Magnetospheric Multiscale observations are used to probe the structure and temperature profile of a guide field reconnection exhaust ~100 ion inertial lengths downstream from the X-line in the Earth's magnetosheath. Asymmetric Hall electric and magnetic field signatures were detected, together with a density cavity confined near 1 edge of the exhaust and containing electron flow toward the X-line. Electron holes were also detected both on the cavity edge and at the Hall magnetic field reversal. Predominantly parallel ion and electron heating was observed in the main exhaust, but within the cavity, electron cooling and enhanced parallel ion heating were found. This is explained in terms of the parallel electric field, which inhibits electron mixing within the cavity on newly reconnected field lines but accelerates ions. Consequently, guide field reconnection causes inhomogeneous changes in ion and electron temperature across the exhaust.

10.
Phys Rev Lett ; 119(20): 205101, 2017 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-29219385

RESUMO

Plasma turbulence is investigated using unprecedented high-resolution ion velocity distribution measurements by the Magnetospheric Multiscale mission (MMS) in the Earth's magnetosheath. This novel observation of a highly structured particle distribution suggests a cascadelike process in velocity space. Complex velocity space structure is investigated using a three-dimensional Hermite transform, revealing, for the first time in observational data, a power-law distribution of moments. In analogy to hydrodynamics, a Kolmogorov approach leads directly to a range of predictions for this phase-space transport. The scaling theory is found to be in agreement with observations. The combined use of state-of-the-art MMS data sets, novel implementation of a Hermite transform method, and scaling theory of the velocity cascade opens new pathways to the understanding of plasma turbulence and the crucial velocity space features that lead to dissipation in plasmas.

11.
Phys Rev Lett ; 118(26): 265101, 2017 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-28707935

RESUMO

We report observations from the Magnetospheric Multiscale (MMS) satellites of the electron jet in a symmetric magnetic reconnection event with moderate guide field. All four spacecraft sampled the ion diffusion region and observed the electron exhaust. The observations suggest that the presence of the guide field leads to an asymmetric Hall field, which results in an electron jet skewed towards the separatrix with a nonzero component along the magnetic field. The jet appears in conjunction with a spatially and temporally persistent parallel electric field ranging from -3 to -5 mV/m, which led to dissipation on the order of 8 nW/m^{3}. The parallel electric field heats electrons that drift through it, and is associated with a streaming instability and electron phase space holes.

12.
Phys Rev Lett ; 117(18): 185102, 2016 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-27835012

RESUMO

Observations made using the Wind spacecraft of Hall magnetic fields in solar wind reconnection exhausts are presented. These observations are consistent with the generation of Hall fields by a narrow ion inertial scale current layer near the separatrix, which is confirmed with an appropriately scaled particle-in-cell simulation that shows excellent agreement with observations. The Hall fields are observed thousands of ion inertial lengths downstream from the reconnection X line, indicating that narrow regions of kinetic dynamics can persist extremely far downstream.

13.
Phys Rev Lett ; 116(14): 145101, 2016 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-27104714

RESUMO

The same time domain structures (TDS) have been observed on two Magnetospheric Multiscale Satellites near Earth's dayside magnetopause. These TDS, traveling away from the X line along the magnetic field at 4000 km/s, accelerated field-aligned ∼5 eV electrons to ∼200 eV by a single Fermi reflection of the electrons by these overtaking barriers. Additionally, the TDS contained both positive and negative potentials, so they were a mixture of electron holes and double layers. They evolve in ∼10 km of space or 7 ms of time and their spatial scale size is 10-20 km, which is much larger than the electron gyroradius (<1 km) or the electron inertial length (4 km at the observation point, less nearer the X line).

14.
Phys Rev Lett ; 117(1): 015001, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27419573

RESUMO

We report observations from the Magnetospheric Multiscale (MMS) satellites of a large guide field magnetic reconnection event. The observations suggest that two of the four MMS spacecraft sampled the electron diffusion region, whereas the other two spacecraft detected the exhaust jet from the event. The guide magnetic field amplitude is approximately 4 times that of the reconnecting field. The event is accompanied by a significant parallel electric field (E_{∥}) that is larger than predicted by simulations. The high-speed (∼300 km/s) crossing of the electron diffusion region limited the data set to one complete electron distribution inside of the electron diffusion region, which shows significant parallel heating. The data suggest that E_{∥} is balanced by a combination of electron inertia and a parallel gradient of the gyrotropic electron pressure.

15.
Phys Rev Lett ; 116(23): 235102, 2016 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-27341241

RESUMO

We report observations from the Magnetospheric Multiscale satellites of parallel electric fields (E_{∥}) associated with magnetic reconnection in the subsolar region of the Earth's magnetopause. E_{∥} events near the electron diffusion region have amplitudes on the order of 100 mV/m, which are significantly larger than those predicted for an antiparallel reconnection electric field. This Letter addresses specific types of E_{∥} events, which appear as large-amplitude, near unipolar spikes that are associated with tangled, reconnected magnetic fields. These E_{∥} events are primarily in or near a current layer near the separatrix and are interpreted to be double layers that may be responsible for secondary reconnection in tangled magnetic fields or flux ropes. These results are telling of the three-dimensional nature of magnetopause reconnection and indicate that magnetopause reconnection may be often patchy and/or drive turbulence along the separatrix that results in flux ropes and/or tangled magnetic fields.

16.
Geophys Res Lett ; 43(10): 4716-4724, 2016 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-27635105

RESUMO

New Magnetospheric Multiscale (MMS) observations of small-scale (~7 ion inertial length radius) flux transfer events (FTEs) at the dayside magnetopause are reported. The 10 km MMS tetrahedron size enables their structure and properties to be calculated using a variety of multispacecraft techniques, allowing them to be identified as flux ropes, whose flux content is small (~22 kWb). The current density, calculated using plasma and magnetic field measurements independently, is found to be filamentary. Intercomparison of the plasma moments with electric and magnetic field measurements reveals structured non-frozen-in ion behavior. The data are further compared with a particle-in-cell simulation. It is concluded that these small-scale flux ropes, which are not seen to be growing, represent a distinct class of FTE which is generated on the magnetopause by secondary reconnection.

17.
Geophys Res Lett ; 42(18): 7239-7247, 2015 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27478283

RESUMO

A significant fraction of the energy released by magnetotail reconnection appears to go into ion heating, but this heating is generally anisotropic. We examine ARTEMIS dual-spacecraft observations of a long-duration magnetotail exhaust generated by antiparallel reconnection in conjunction with particle-in-cell simulations, showing spatial variations in the anisotropy across the outflow far (>100di ) downstream of the X line. A consistent pattern is found in both the spacecraft data and the simulations: While the total temperature across the exhaust is rather constant, near the boundaries Ti,|| dominates. The plasma is well above the firehose threshold within patchy spatial regions at |BX |∈[0.1,0.5]B0, suggesting that the drive for the instability is strong and the instability is too weak to relax the anisotropy. At the midplane ( |BX|≲0.1B0), Ti,⊥>Ti,|| and ions undergo Speiser-like motion despite the large distance from the X line.

18.
Phys Rev Lett ; 110(22): 225001, 2013 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-23767730

RESUMO

The partition of energy flux in magnetic reconnection is examined experimentally using Cluster satellite observations of collisionless reconnection in Earth's magnetotail. In this plasma regime, the dominant component of the energy flux is ion enthalpy flux, with smaller contributions from the electron enthalpy and heat flux and the ion kinetic energy flux. However, the Poynting flux is not negligible, and in certain parts of the ion diffusion region the Poynting flux in fact dominates. Evidence for earthward-tailward asymmetry is ascribed to the presence of Earth's dipole fields.

19.
Nature ; 439(7073): 175-8, 2006 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-16407946

RESUMO

Magnetic reconnection in a current sheet converts magnetic energy into particle energy, a process that is important in many laboratory, space and astrophysical contexts. It is not known at present whether reconnection is fundamentally a process that can occur over an extended region in space or whether it is patchy and unpredictable in nature. Frequent reports of small-scale flux ropes and flow channels associated with reconnection in the Earth's magnetosphere raise the possibility that reconnection is intrinsically patchy, with each reconnection X-line (the line along which oppositely directed magnetic field lines reconnect) extending at most a few Earth radii (R(E)), even though the associated current sheets span many tens or hundreds of R(E). Here we report three-spacecraft observations of accelerated flow associated with reconnection in a current sheet embedded in the solar wind flow, where the reconnection X-line extended at least 390R(E) (or 2.5 x 10(6) km). Observations of this and 27 similar events imply that reconnection is fundamentally a large-scale process. Patchy reconnection observed in the Earth's magnetosphere is therefore likely to be a geophysical effect associated with fluctuating boundary conditions, rather than a fundamental property of reconnection. Our observations also reveal, surprisingly, that reconnection can operate in a quasi-steady-state manner even when undriven by the external flow.

20.
J Geophys Res Space Phys ; 127(7): e2022JA030408, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36248013

RESUMO

We present observations in Earth's magnetotail by the Magnetospheric Multiscale spacecraft that are consistent with magnetic field annihilation, rather than magnetic topology change, causing fast magnetic-to-electron energy conversion in an electron-scale current sheet. Multi-spacecraft analysis for the magnetic field reconstruction shows that an electron-scale magnetic island was embedded in the observed electron diffusion region (EDR), suggesting an elongated shape of the EDR. Evidence for the annihilation was revealed in the form of the island growing at a rate much lower than expected for the standard X-type geometry of the EDR, which indicates that magnetic flux injected into the EDR was not ejected from the X-point or accumulated in the island, but was dissipated in the EDR. This energy conversion process is in contrast to that in the standard EDR of a reconnecting current sheet where the energy of antiparallel magnetic fields is mostly converted to electron bulk-flow energy. Fully kinetic simulation also demonstrates that an elongated EDR is subject to the formation of electron-scale magnetic islands in which fast but transient annihilation can occur. Consistent with the observations and simulation, theoretical analysis shows that fast magnetic diffusion can occur in an elongated EDR in the presence of nongyrotropic electron effects. We suggest that the annihilation in elongated EDRs may contribute to the dissipation of magnetic energy in a turbulent collisionless plasma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA