Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 22(1): 423, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34493210

RESUMO

BACKGROUND: Assessing the reproducibility of measurements is an important first step for improving the reliability of downstream analyses of high-throughput metabolomics experiments. We define a metabolite to be reproducible when it demonstrates consistency across replicate experiments. Similarly, metabolites which are not consistent across replicates can be labeled as irreproducible. In this work, we introduce and evaluate the use (Ma)ximum (R)ank (R)eproducibility (MaRR) to examine reproducibility in mass spectrometry-based metabolomics experiments. We examine reproducibility across technical or biological samples in three different mass spectrometry metabolomics (MS-Metabolomics) data sets. RESULTS: We apply MaRR, a nonparametric approach that detects the change from reproducible to irreproducible signals using a maximal rank statistic. The advantage of using MaRR over model-based methods that it does not make parametric assumptions on the underlying distributions or dependence structures of reproducible metabolites. Using three MS Metabolomics data sets generated in the multi-center Genetic Epidemiology of Chronic Obstructive Pulmonary Disease (COPD) study, we applied the MaRR procedure after data processing to explore reproducibility across technical or biological samples. Under realistic settings of MS-Metabolomics data, the MaRR procedure effectively controls the False Discovery Rate (FDR) when there was a gradual reduction in correlation between replicate pairs for less highly ranked signals. Simulation studies also show that the MaRR procedure tends to have high power for detecting reproducible metabolites in most situations except for smaller values of proportion of reproducible metabolites. Bias (i.e., the difference between the estimated and the true value of reproducible signal proportions) values for simulations are also close to zero. The results reported from the real data show a higher level of reproducibility for technical replicates compared to biological replicates across all the three different datasets. In summary, we demonstrate that the MaRR procedure application can be adapted to various experimental designs, and that the nonparametric approach performs consistently well. CONCLUSIONS: This research was motivated by reproducibility, which has proven to be a major obstacle in the use of genomic findings to advance clinical practice. In this paper, we developed a data-driven approach to assess the reproducibility of MS-Metabolomics data sets. The methods described in this paper are implemented in the open-source R package marr, which is freely available from Bioconductor at http://bioconductor.org/packages/marr .


Assuntos
Metabolômica , Espectrometria de Massas , Reprodutibilidade dos Testes
2.
J Am Stat Assoc ; 113(523): 1028-1039, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31249430

RESUMO

The identification of reproducible signals from the results of replicate high-throughput experiments is an important part of modern biological research. Often little is known about the dependence structure and the marginal distribution of the data, motivating the development of a nonparametric approach to assess reproducibility. The procedure, which we call the maximum rank reproducibility (MaRR) procedure, uses a maximum rank statistic to parse reproducible signals from noise without making assumptions about the distribution of reproducible signals. Because it uses the rank scale this procedure can be easily applied to a variety of data types. One application is to assess the reproducibility of RNA-seq technology using data produced by the sequencing quality control (SEQC) consortium, which coordinated a multi-laboratory effort to assess reproducibility across three RNA-seq platforms. Our results on simulations and SEQC data show that the MaRR procedure effectively controls false discovery rates, has desirable power properties, and compares well to existing methods. Supplementary materials for this article are available online.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA