Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Physiol ; 597(11): 2903-2923, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30993693

RESUMO

KEY POINTS: Rats subjected to sustained hypoxia (SH) present increases in arterial pressure (AP) and in glutamatergic transmission in the nucleus tractus solitarius (NTS) neurons sending projections to ventrolateral medulla (VLM). Treatment with minocycline, a microglial inhibitor, attenuated the increase in AP in response to SH. The increase in the amplitude of glutamatergic postsynaptic currents in the NTS-VLM neurons, induced by postsynaptic mechanisms, was blunted by minocycline treatment. The number of microglial cells was increased in the NTS of vehicle-treated SH rats but not in the NTS of minocycline-treated rats. The data show that microglial recruitment/proliferation induced by SH is associated with the enhancement of excitatory neurotransmission in NTS-VLM neurons, which may contribute to the observed increase in AP. ABSTRACT: Short-term sustained hypoxia (SH) produces significant autonomic and respiratory adjustments and triggers activation of microglia, the resident immune cells in the brain. SH also enhances glutamatergic neurotransmission in the NTS. Here we evaluated the role of microglial activation induced by SH on the cardiovascular changes and mainly on glutamatergic neurotransmission in NTS neurons sending projections to the ventrolateral medulla (NTS-VLM), using a microglia inhibitor (minocycline). Direct measurement of arterial pressure (AP) in freely moving rats showed that SH (24 h, fraction of inspired oxygen ( FI,O2 ) 0.1) in vehicle and minocycline (30 mg/kg i.p. for 3 days)-treated groups produced a significant increase in AP in relation to control groups under normoxic conditions, but this increase was significantly lower in minocycline-treated rats. Whole-cell patch-clamp recordings revealed that the active properties of the membrane were comparable among the groups. Nevertheless, the amplitudes of glutamatergic postsynaptic currents, evoked by tractus solitarius stimulation, were increased in NTS-VLM neurons of SH rats. Changes in asynchronous glutamatergic currents indicated that the observed increase in amplitude was due to postsynaptic mechanisms. These changes were blunted in the SH group previously treated with minocycline. Using immunofluorescence, we found that the number of microglial cells was increased in the NTS of vehicle-treated SH rats but not in the NTS neurons of minocycline-treated rats. Our data support the concept that microglial activation induced by SH is associated with the enhancement of excitatory neurotransmission in NTS-VLM neurons, which may contribute to the increase in AP observed in this experimental model.


Assuntos
Hipóxia/fisiopatologia , Minociclina/farmacologia , Neurônios/efeitos dos fármacos , Núcleo Solitário/efeitos dos fármacos , Animais , Pressão Arterial/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores , Masculino , Microglia/fisiologia , Neurônios/fisiologia , Ratos Wistar , Núcleo Solitário/fisiologia
2.
Am J Physiol Endocrinol Metab ; 317(2): E388-E398, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31013147

RESUMO

The impaired ability of the autonomic nervous system to respond to hypoglycemia is termed "hypoglycemia-associated autonomic failure" (HAAF). This life-threatening phenomenon results from at least two recent episodes of hypoglycemia, but the pathology underpinning HAAF remains largely unknown. Although naloxone appears to improve hypoglycemia counterregulation under controlled conditions, hypoglycemia prevention remains the current mainstay therapy for HAAF. Epinephrine-synthesizing neurons in the rostroventrolateral (C1) and dorsomedial (C3) medulla project to the subset of sympathetic preganglionic neurons that regulate peripheral epinephrine release. Here we determined whether or not C1 and C3 neuronal activation is impaired in HAAF and whether or not 1 wk of hypoglycemia prevention or treatment with naloxone could restore C1 and C3 neuronal activation and improve HAAF. Twenty male Sprague-Dawley rats (250-300 g) were used. Plasma epinephrine levels were significantly increased after a single episode of hypoglycemia (n = 4; 5,438 ± 783 pg/ml vs. control 193 ± 27 pg/ml, P < 0.05). Repeated hypoglycemia significantly reduced the plasma epinephrine response to subsequent hypoglycemia (n = 4; 2,179 ± 220 pg/ml vs. 5,438 ± 783 pg/ml, P < 0.05). Activation of medullary C1 (n = 4; 50 ± 5% vs. control 3 ± 1%, P < 0.05) and C3 (n = 4; 45 ± 5% vs. control 4 ± 1%, P < 0.05) neurons was significantly increased after a single episode of hypoglycemia. Activation of C1 (n = 4; 12 ± 3%, P < 0.05) and C3 (n = 4; 19 ± 5%, P < 0.05) neurons was significantly reduced in the HAAF groups. Hypoglycemia prevention or treatment with naloxone did not restore the plasma epinephrine response or C1 and C3 neuronal activation. Thus repeated hypoglycemia reduced the activation of C1 and C3 neurons mediating adrenal medullary responses to subsequent bouts of hypoglycemia.


Assuntos
Glucose/farmacologia , Hipoglicemia/complicações , Hipoglicemia/fisiopatologia , Bulbo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Animais , Sistema Nervoso Autônomo/efeitos dos fármacos , Sistema Nervoso Autônomo/metabolismo , Sistema Nervoso Autônomo/fisiopatologia , Doenças do Sistema Nervoso Autônomo/sangue , Doenças do Sistema Nervoso Autônomo/etiologia , Doenças do Sistema Nervoso Autônomo/patologia , Doenças do Sistema Nervoso Autônomo/fisiopatologia , Glicemia/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Hipoglicemia/sangue , Hipoglicemia/patologia , Insulina/sangue , Masculino , Bulbo/patologia , Bulbo/fisiopatologia , Neurônios/fisiologia , Ratos , Ratos Sprague-Dawley , Recidiva
3.
J Physiol ; 596(15): 3149-3169, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29159869

RESUMO

KEY POINTS: Activity-dependent plasticity can be induced in carotid body (CB) chemosensory afferents without chronic intermittent hypoxia (CIH) preconditioning by acute intermittent hypoxia coincident with bouts of hypercapnia (AIH-Hc). Several properties of this acute plasticity are shared with CIH-dependent sensory long-term facilitation (LTF) in that induction is dependent on 5-HT, angiotensin II, protein kinase C and reactive oxygen species. Several properties differ from CIH-dependent sensory LTF; H2 O2 appears to play no part in induction, whereas maintenance requires purinergic P2X2/3 receptor activation and is dependent on transient receptor potential vanilloid type 1 (TRPV1) receptor sensitization. Because P2X2/3 and TRPV1 receptors are located in carotid sinus nerve (CSN) terminals but not presynaptic glomus cells, a primary site of the acute AIH-Hc induced sensory LTF appears to be postsynaptic. Our results obtained in vivo suggest a role for TRPV1-dependent CB activity in acute sympathetic LTF. We propose that P2X-TRPV1-receptor-dependent sensory LTF may constitute an important early mechanism linking sleep apnoea with hypertension and/or cardiovascular disease. ABSTRACT: Apnoeas constitute an acute existential threat to neonates and adults. In large part, this threat is detected by the carotid bodies, which are the primary peripheral chemoreceptors, and is combatted by arousal and acute cardiorespiratory responses, including increased sympathetic output. Similar responses occur with repeated apnoeas but they continue beyond the last apnoea and can persist for hours [i.e. ventilatory and sympathetic long-term facilitation (LTF)]. These long-term effects may be adaptive during acute episodic apnoea, although they may prolong hypertension causing chronic cardiovascular impairment. We report a novel mechanism of acute carotid body (CB) plasticity (sensory LTF) induced by repeated apnoea-like stimuli [i.e. acute intermittent hypoxia coincident with bouts of hypercapnia (AIH-Hc)]. This plasticity did not require chronic intermittent hypoxia preconditioning, was dependent on P2X receptors and protein kinase C, and involved heat-sensitive transient receptor potential vanilloid type 1 (TRPV1) receptors. Reactive oxygen species (O2 ·¯) were involved in initiating plasticity only; no evidence was found for H2 O2 involvement. Angiotensin II and 5-HT receptor antagonists, losartan and ketanserin, severely reduced CB responses to individual hypoxic-hypercapnic challenges and prevented the induction of sensory LTF but, if applied after AIH-Hc, failed to reduce plasticity-associated activity. Conversely, TRPV1 receptor antagonism had no effect on responses to individual hypoxic-hypercapnic challenges but reduced plasticity-associated activity by ∼50%. Further, TRPV1 receptor antagonism in vivo reduced sympathetic LTF caused by AIH-Hc, although only if the CBs were functional. These data demonstrate a new mechanism of CB plasticity and suggest P2X-TRPV1-dependent sensory LTF as a novel target for pharmacological intervention in some forms of neurogenic hypertension associated with recurrent apnoeas.


Assuntos
Corpo Carotídeo/fisiologia , Hipercapnia/fisiopatologia , Hipóxia/fisiopatologia , Receptores Purinérgicos P2X/fisiologia , Canais de Cátion TRPV/fisiologia , Animais , Masculino , Ratos Sprague-Dawley
4.
J Physiol ; 596(15): 3217-3232, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29645283

RESUMO

KEY POINTS: In anaesthetized rats, acute intermittent hypoxia increases sympathetic nerve activity, sympathetic peripheral chemoreflex sensitivity and central sympathetic-respiratory coupling. Renin-angiotensin system inhibition prevents the sympathetic effects of intermittent hypoxia, with intermittent injections of angiotensin II into the systemic circulation replicating these effects. Bilateral carotid body denervation reduces the sympathetic effects of acute intermittent hypoxia and eliminates the increases in chemoreflex sensitivity and sympathetic-respiratory coupling. Pharmacological inhibition of the subfornical organ also reduces the sympathetic effects of acute intermittent hypoxia, although it has no effect on the increases in chemoreflex sensitivity and central sympathetic-respiratory coupling. Combining both interventions eliminates the sympathetic effects of both intermittent hypoxia and angiotensin II. ABSTRACT: Circulating angiotensin II (Ang II) is vital for arterial pressure elevation following intermittent hypoxia in rats, although its importance in the induction of sympathetic changes is unclear. We tested the contribution of the renin-angiotensin system to the effects of acute intermittent hypoxia (AIH) in anaesthetized and ventilated rats. There was a 33.7 ± 2.9% increase in sympathetic nerve activity (SNA), while sympathetic chemoreflex sensitivity and central sympathetic-respiratory coupling increased by one-fold following AIH. The sympathetic effects of AIH were prevented by blocking angiotensin type 1 receptors with systemic losartan. Intermittent systemic injections of Ang II (Int.Ang II) elicited similar sympathetic responses to AIH. To identify the neural pathways responsible for the effects of AIH and Int.Ang II, we performed bilateral carotid body denervation, which reduced the increase in SNA by 56% and 45%, respectively. Conversely, pharmacological inhibition of the subfornical organ (SFO), an established target of circulating Ang II, reduced the increase in SNA following AIH and Int.Ang II by 65% and 59%, respectively, although it did not prevent the sensitization of the sympathetic peripheral chemoreflex, nor the increase in central sympathetic-respiratory coupling. Combined carotid body denervation and inhibition of the SFO eliminated the enhancement of SNA following AIH and Int.Ang II. Repeated systemic injections of phenylephrine caused an elevation in SNA similar to AIH, and this effect was prevented by a renin inhibitor, aliskiren. Our findings show that the sympathetic effects of AIH are the result of RAS-mediated activations of the carotid bodies and the SFO.


Assuntos
Angiotensina II/fisiologia , Corpo Carotídeo/fisiologia , Hipóxia/fisiopatologia , Órgão Subfornical/fisiologia , Sistema Nervoso Simpático/fisiologia , Animais , Denervação , Masculino , Ratos Sprague-Dawley
5.
Am J Physiol Heart Circ Physiol ; 314(3): H563-H572, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29212793

RESUMO

Intermittent hypoxia causes a persistent increase in sympathetic activity that progresses to hypertension in chronic conditions such as obstructive sleep apnea. Pituitary adenylate cyclase-activating polypeptide (PACAP) is an excitatory neurotransmitter that causes long-lasting sympathetic excitation. We aimed to determine if intermittent activation of the rostral ventrolateral medulla (RVLM) causes PACAP-mediated elevation of sympathetic nerve activity, termed sympathetic long-term facilitation (sLTF). The role of PACAP in mediating sLTF in response to intermittent activation of the RVLM was investigated in urethane-anaesthetized and artificially ventilated rats ( n = 65, Sprague-Dawley). Bilateral RVLM microinjections of the PACAP type 1 receptor/vasoactive intestinal polypeptide receptor type 2 receptor antagonist PACAP-(6-38) [ n = 6, change (Δ): -16.4 ± 6.5%) or an ionotropic glutamate antagonist, kynurenate ( n = 6, Δ:-7.2 ± 2.3%), blocked the development of acute intermittent hypoxia-induced sLTF ( n = 6, Δ: 49.2 ± 14.2%). Intermittent RVLM microinjections of glutamate caused sLTF ( n = 5, Δ: 56.9 ± 14.7%) that was abolished by PACAP-(6-38) pretreatment ( n = 5, Δ:-1.2 ± 4.7%). Conversely, intermittent microinjections of PACAP in the RVLM did not elicit sLTF. Intermittent bilateral disinhibition of the RVLM by microinjection of γ-aminobutyric acid in the caudal ventrolateral medulla did not elicit sLTF. Direct activation of RVLM neurons is crucial for the development of sLTF. PACAP and glutamate act synergistically in the RVLM, with both being necessary for the sLTF response. We found that activation of glutamate but not PACAP receptors is necessary and sufficient to generate sLTF, even in the absence of intermittent hypoxia. Our results demonstrate that PACAP within the RVLM may contribute to the development of obstructive sleep apnea -induced hypertension. NEW & NOTEWORTHY Pharmacological blockade of either pituitary adenylate cyclase-activating polypeptide (PACAP) or ionotropic glutamate receptors in the rostral ventrolateral medulla prevents development of sympathetic long-term facilitation. PACAP receptor inhibition prevents the occurrence of hypoxia-induced peripheral chemoreflex sensitization. Thus, PACAP receptors may be a potential therapeutic target serving to reduce heightened sympathetic tone and hypersensitized cardiovascular reflexes.


Assuntos
Hipóxia/fisiopatologia , Ácido Cinurênico/administração & dosagem , Potenciação de Longa Duração/efeitos dos fármacos , Bulbo/efeitos dos fármacos , Fragmentos de Peptídeos/administração & dosagem , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/administração & dosagem , Apneia Obstrutiva do Sono/fisiopatologia , Sistema Nervoso Simpático/efeitos dos fármacos , Doença Aguda , Animais , Modelos Animais de Doenças , Ácido Glutâmico/administração & dosagem , Hipertensão/etiologia , Hipertensão/fisiopatologia , Hipóxia/complicações , Hipóxia/metabolismo , Masculino , Bulbo/metabolismo , Bulbo/fisiopatologia , Microinjeções , Ratos Sprague-Dawley , Receptores de Glutamato/efeitos dos fármacos , Receptores de Glutamato/metabolismo , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/efeitos dos fármacos , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Apneia Obstrutiva do Sono/complicações , Apneia Obstrutiva do Sono/metabolismo , Sistema Nervoso Simpático/metabolismo , Sistema Nervoso Simpático/fisiopatologia , Transmissão Sináptica/efeitos dos fármacos , Fatores de Tempo , Ácido gama-Aminobutírico/administração & dosagem
6.
Am J Physiol Regul Integr Comp Physiol ; 315(6): R1115-R1122, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30281326

RESUMO

Activation of neurons in the rostral ventrolateral medulla (RVLM) following glucoprivation initiates sympathoadrenal activation, adrenaline release, and increased glucose production. Here, we aimed to determine the role of RVLM µ-opioid receptors in the counterregulatory response to systemic glucoprivation. Experiments were performed in pentobarbital sodium anesthetized male Sprague-Dawley rats ( n = 30). Bilateral activation of RVLM µ-opioid receptors with [d-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin (DAMGO) (8 mM, 50 nl) depressed adrenal sympathetic nerve activity for ~60 min ( n = 6; Δ49.9 ± 5.8%, P < 0.05). The counterregulatory response to glucoprivation (measured by adrenal sympathetic efferent nerve activity) induced by 2-deoxyglucose (2-DG) ( n = 6; Δ63.6 ± 16.5%, P < 0.05) was completely blocked 60 min after DAMGO microinjections ( n = 6; Δ10.2 ± 3.5%, P < 0.05). Furthermore, DAMGO pretreatment attenuated the increase in blood glucose levels after 2-DG infusion ( n = 6; 6.1 ± 0.7mmol/l vs. baseline 5.2 ± 0.3mmol/l, P > 0.05) compared with 2-DG alone ( n = 6; 7.6 ± 0.4mmol/l vs. baseline 6.0 ± 0.4mmol/l, P < 0.05). Thus, activation of RVLM µ-opioid receptors attenuated the neural efferent response to glucoprivation and reduced glucose production.


Assuntos
Desoxiglucose/farmacologia , Bulbo/efeitos dos fármacos , Neurônios/fisiologia , Receptores Opioides/efeitos dos fármacos , Animais , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Desoxiglucose/metabolismo , Masculino , Bulbo/metabolismo , Microinjeções/métodos , Antagonistas de Entorpecentes/farmacologia , Neurônios/efeitos dos fármacos , Ratos Sprague-Dawley , Receptores Opioides/metabolismo , Sistema Nervoso Simpático/efeitos dos fármacos , Sistema Nervoso Simpático/fisiologia
7.
Am J Physiol Regul Integr Comp Physiol ; 315(6): R1115-R1122, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30499309

RESUMO

Activation of neurons in the rostral ventrolateral medulla (RVLM) following glucoprivation initiates sympathoadrenal activation, adrenaline release, and increased glucose production. Here, we aimed to determine the role of RVLM µ-opioid receptors in the counterregulatory response to systemic glucoprivation. Experiments were performed in pentobarbital sodium anesthetized male Sprague-Dawley rats ( n = 30). Bilateral activation of RVLM µ-opioid receptors with [d-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin (DAMGO) (8 mM, 50 nl) depressed adrenal sympathetic nerve activity for ~60 min ( n = 6; Δ49.9 ± 5.8%, P < 0.05). The counterregulatory response to glucoprivation (measured by adrenal sympathetic efferent nerve activity) induced by 2-deoxyglucose (2-DG) ( n = 6; Δ63.6 ± 16.5%, P < 0.05) was completely blocked 60 min after DAMGO microinjections ( n = 6; Δ10.2 ± 3.5%, P < 0.05). Furthermore, DAMGO pretreatment attenuated the increase in blood glucose levels after 2-DG infusion ( n = 6; 6.1 ± 0.7mmol/l vs. baseline 5.2 ± 0.3mmol/l, P > 0.05) compared with 2-DG alone ( n = 6; 7.6 ± 0.4mmol/l vs. baseline 6.0 ± 0.4mmol/l, P < 0.05). Thus, activation of RVLM µ-opioid receptors attenuated the neural efferent response to glucoprivation and reduced glucose production.


Assuntos
Desoxiglucose/farmacologia , Bulbo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Receptores Opioides/efeitos dos fármacos , Animais , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Epinefrina/metabolismo , Masculino , Bulbo/fisiologia , Antagonistas de Entorpecentes/farmacologia , Neurônios/fisiologia , Ratos Sprague-Dawley , Sistema Nervoso Simpático/efeitos dos fármacos , Sistema Nervoso Simpático/fisiologia
8.
J Neurosci ; 36(2): 506-17, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26758841

RESUMO

Cardiovascular autonomic dysfunction in seizure is a major cause of sudden unexpected death in epilepsy. The catecholaminergic neurons in the rostral ventrolateral medulla (RVLM) maintain sympathetic vasomotor tone and blood pressure through their direct excitatory projections to the intermediolateral (IML) cell column. Glutamate, the principal excitatory neurotransmitter in brain, is increased in seizures. Pituitary adenylate cyclase activating polypeptide (PACAP) is an excitatory neuropeptide with neuroprotective properties, whereas microglia are key players in inflammatory responses in CNS. We investigated the roles of glutamate, PACAP, and microglia on RVLM catecholaminergic neurons during the cardiovascular responses to 2 mg/kg kainic acid (KA)-induced seizures in urethane anesthetized, male Sprague Dawley rats. Microinjection of the glutamate antagonist, kynurenic acid (50 nl; 100 mM) into RVLM, blocked the seizure-induced 43.2 ± 12.6% sympathoexcitation (p ≤ 0.05), and abolished the pressor responses, tachycardia, and QT interval prolongation. PACAP or microglia antagonists (50 nl) (PACAP(6-38), 15 pmol; minocycline 10 mg/ml) microinjected bilaterally into RVLM had no effect on seizure-induced sympathoexcitation, pressor responses, or tachycardia but abolished the prolongation of QT interval. The actions of PACAP or microglia on RVLM neurons do not cause sympathoexcitation, but they do elicit proarrhythmogenic changes. An immunohistochemical analysis in 2 and 10 mg/kg KA-induced seizure rats revealed that microglia surrounding catecholaminergic neurons are in a "surveillance" state with no change in the number of M2 microglia (anti-inflammatory). In conclusion, seizure-induced sympathoexcitation is caused by activation of glutamatergic receptors in RVLM that also cause proarrhythmogenic changes mediated by PACAP and microglia. SIGNIFICANCE STATEMENT: Sudden unexpected death in epilepsy is a major cause of death in epilepsy. Generally, seizures are accompanied by changes in brain function leading to uncontrolled nerve activity causing high blood pressure, rapid heart rate, and abnormal heart rhythm. Nevertheless, the brain chemicals causing these cardiovascular changes are unknown. Chemicals, such as glutamate and pituitary adenylate cyclase activating polypeptide, whose expression is increased after seizures, act on specific cardiovascular nuclei in the brain and influence the activity of the heart, and blood vessels. Microglia, which manage excitation in the brain, are commonly activated after seizure and produce pro- and/or anti-inflammatory factors. Hence, we aimed to determine the effects of blocking glutamate, pituitary adenylate cyclase activating polypeptide, and microglia in the RVLM and their contribution to cardiovascular autonomic dysfunction in seizure.


Assuntos
Anormalidades Cardiovasculares/etiologia , Bulbo/efeitos dos fármacos , Microglia/efeitos dos fármacos , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Receptores de Glutamato/metabolismo , Convulsões/complicações , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Modelos Animais de Doenças , Antagonistas de Aminoácidos Excitatórios/farmacologia , Ritmo Gama/efeitos dos fármacos , Ritmo Gama/fisiologia , Ácido Caínico/toxicidade , Masculino , Bulbo/metabolismo , Proteínas dos Microfilamentos/metabolismo , Minociclina/farmacologia , Fragmentos de Peptídeos/farmacologia , Ratos , Ratos Sprague-Dawley , Convulsões/induzido quimicamente , Convulsões/patologia , Nervos Esplâncnicos/efeitos dos fármacos , Nervos Esplâncnicos/fisiologia , Tirosina 3-Mono-Oxigenase/metabolismo , Vagotomia
9.
J Neurovirol ; 23(2): 186-204, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27761801

RESUMO

Neurological respiratory deficits are serious outcomes of West Nile virus (WNV) disease. WNV patients requiring intubation have a poor prognosis. We previously reported that WNV-infected rodents also appear to have respiratory deficits when assessed by whole-body plethysmography and diaphragmatic electromyography. The purpose of this study was to determine if the nature of the respiratory deficits in WNV-infected rodents is neurological and if deficits are due to a disorder of brainstem respiratory centers, cervical spinal cord (CSC) phrenic motor neuron (PMN) circuitry, or both. We recorded phrenic nerve (PN) activity and found that in WNV-infected mice, PN amplitude is reduced, corroborating a neurological basis for respiratory deficits. These results were associated with a reduction in CSC motor neuron number. We found no dramatic deficits, however, in brainstem-mediated breathing rhythm generation or responses to hypercapnia. PN frequency and pattern parameters were normal, and all PN parameters changed appropriately upon a CO2 challenge. Histological analysis revealed generalized microglia activation, astrocyte reactivity, T cell and neutrophil infiltration, and mild histopathologic lesions in both the brainstem and CSC, but none of these were tightly correlated with PN function. Similar results in PN activity, brainstem function, motor neuron number, and histopathology were seen in WNV-infected hamsters, except that histopathologic lesions were more severe. Taken together, the results suggest that respiratory deficits in acute WNV infection are primarily due to a lower motor neuron disorder affecting PMNs and the PN rather than a brainstem disorder. Future efforts should focus on markers of neuronal dysfunction, axonal degeneration, and myelination.


Assuntos
Tronco Encefálico/imunologia , Neurônios Motores/imunologia , Nervo Frênico/imunologia , Medula Espinal/imunologia , Febre do Nilo Ocidental/imunologia , Animais , Astrócitos/imunologia , Astrócitos/patologia , Astrócitos/virologia , Tronco Encefálico/patologia , Tronco Encefálico/virologia , Contagem de Células , Cricetulus , Eletromiografia/métodos , Feminino , Humanos , Masculino , Camundongos , Microglia/imunologia , Microglia/patologia , Microglia/virologia , Neurônios Motores/patologia , Neurônios Motores/virologia , Condução Nervosa , Infiltração de Neutrófilos , Nervo Frênico/patologia , Nervo Frênico/virologia , Medula Espinal/patologia , Medula Espinal/virologia , Linfócitos T/imunologia , Linfócitos T/patologia , Linfócitos T/virologia , Febre do Nilo Ocidental/patologia , Febre do Nilo Ocidental/virologia , Vírus do Nilo Ocidental/patogenicidade , Vírus do Nilo Ocidental/fisiologia
10.
J Neurosci ; 35(5): 2191-9, 2015 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-25653374

RESUMO

Seizures are accompanied by cardiovascular changes that are a major cause of sudden unexpected death in epilepsy (SUDEP). Seizures activate inflammatory responses in the cardiovascular nuclei of the medulla oblongata and increase neuronal excitability. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide with autocrine and paracrine neuroprotective properties. Microglia are key players in inflammatory responses in the CNS. We sought to determine whether PACAP and microglia mitigate the adverse effects of seizure on cardiovascular function in a rat model of temporal lobe epilepsy. Kainic acid (KA)-induced seizures increased splanchnic sympathetic nerve activity by 97%, accompanied by increase in heart rate (HR) but not blood pressure (BP). Intrathecal infusion of the PACAP antagonist PACAP(6-38) or the microglia antagonists minocycline and doxycycline augmented sympathetic responses to KA-induced seizures. PACAP(6-38) caused a 161% increase, whereas minocycline and doxycycline caused a 225% and 215% increase, respectively. In intrathecal PACAP-antagonist-treated rats, both BP and HR increased, whereas after treatment with microglial antagonists, only BP was significantly increased compared with control. Our findings support the idea that PACAP and its action on microglia at the level of the spinal cord elicit cardioprotective effects during seizure. However, intrathecal PACAP did not show additive effects, suggesting that the agonist effect was at maximum. The protective effect of microglia may occur by adoption of an M2 phenotype and expression of factors such as TGF-ß and IL-10 that promote neuronal quiescence. In summary, therapeutic interventions targeting PACAP and microglia could be a promising strategy for preventing SUDEP.


Assuntos
Arritmias Cardíacas/etiologia , Coração/efeitos dos fármacos , Microglia/efeitos dos fármacos , Fragmentos de Peptídeos/toxicidade , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/toxicidade , Convulsões/fisiopatologia , Animais , Arritmias Cardíacas/fisiopatologia , Pressão Sanguínea , Doxiciclina/toxicidade , Epilepsia do Lobo Temporal/complicações , Epilepsia do Lobo Temporal/metabolismo , Epilepsia do Lobo Temporal/fisiopatologia , Frequência Cardíaca , Masculino , Minociclina/toxicidade , Ratos , Ratos Sprague-Dawley , Convulsões/complicações , Convulsões/metabolismo , Medula Espinal/efeitos dos fármacos , Medula Espinal/fisiopatologia , Sistema Nervoso Simpático/efeitos dos fármacos , Sistema Nervoso Simpático/fisiopatologia
11.
J Pharmacol Exp Ther ; 358(3): 492-501, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27384072

RESUMO

Intermittent hypoxia causes a persistent increase in sympathetic nerve activity (SNA), which progresses to hypertension in conditions such as obstructive sleep apnea. Orexins (A and B) are hypothalamic neurotransmitters with arousal-promoting and sympathoexcitatory effects. We investigated whether the sustained elevation of SNA, termed sympathetic long-term facilitation, after acute intermittent hypoxia (AIH) is caused by endogenous orexin acting on spinal sympathetic preganglionic neurons. The role of orexin in the increased SNA response to AIH was investigated in urethane-anesthetized, vagotomized, and artificially ventilated Sprague-Dawley rats (n = 58). A spinally infused subthreshold dose of orexin-A (intermittent; 0.1 nmol × 10) produced long-term enhancement in SNA (41.4% ± 6.9%) from baseline. This phenomenon was not produced by the same dose of orexin-A administered as a bolus intrathecal infusion (1 nmol; 7.3% ± 2.3%). The dual orexin receptor blocker, Almorexant, attenuated the effect of sympathetic long-term facilitation generated by intermittent orexin-A (20.7% ± 4.5% for Almorexant at 30 mg∙kg(-1) and 18.5% ± 1.2% for 75 mg∙kg(-1)), but not in AIH. The peripheral chemoreflex sympathoexcitatory response to hypoxia was greatly enhanced by intermittent orexin-A and AIH. In both cases, the sympathetic chemoreflex sensitization was reduced by Almorexant. Taken together, spinally acting orexin-A is mechanistically sufficient to evoke sympathetic long-term facilitation. However, AIH-induced sympathetic long-term facilitation appears to rely on mechanisms that are independent of orexin neurotransmission. Our findings further reveal that the activation of spinal orexin receptors is critical to enhance peripheral chemoreceptor responses to hypoxia after AIH.


Assuntos
Células Quimiorreceptoras/citologia , Células Quimiorreceptoras/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Orexinas/administração & dosagem , Orexinas/farmacologia , Sistema Nervoso Simpático/efeitos dos fármacos , Sistema Nervoso Simpático/fisiologia , Animais , Hipóxia Celular/efeitos dos fármacos , Injeções Espinhais , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
12.
Am J Physiol Regul Integr Comp Physiol ; 311(1): R49-56, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27147618

RESUMO

The role of vagal function in cardiovascular risk in older women remains unclear. Autonomic modulation following carbohydrate ingestion (CI) and postural stress (PS) were investigated in 14 healthy men and 21 age-matched postmenopausal women (age: 65.0 ± 2.1 vs. 64.1 ± 1.6 years), with normal and comparable insulin sensitivity. Continuous noninvasive finger arterial pressure and ECG were recorded in the lying and the standing positions before and after ingestion of a carbohydrate-rich meal (600 kcal, carbohydrate 78%, protein 13%, and fat 8%). Low-frequency (LF, 0.04-0.15 Hz) and high-frequency (HF, 0.15-0.4 Hz) components (ms(2)) of heart rate variability (HRV), low-frequency power (mmHg(2)) of systolic blood pressure variability (SBP LF power), and the sequence method for spontaneous baroreflex sensitivity (BRS, ms/mmHg) were used to quantify autonomic modulation. In response to CI and PS, mean arterial pressure maintained stable, and heart rate increased in women and men in the lying and standing positions. Following CI (60, 90, and 120 min postprandially) in the standing position, SBP LF power increased by 40% in men (P = 0.02), with unchanged HRV parameters; in contrast, in women, HRV HF power halved (P = 0.02), with unaltered SBP LF power. During PS before and after CI, similar magnitude of SBP LF power, HRV, and BRS changes was observed in men and women. In conclusion, CI induces sex-specific vascular sympathetic activation in healthy older men, and cardiac vagal inhibition in healthy older women; this CI-mediated efferent vagal inhibition may suggest differential cardiovascular risk factors in women, irrespective of insulin resistance, and impairment of autonomic control.


Assuntos
Vasos Sanguíneos/inervação , Carboidratos da Dieta/farmacologia , Coração/inervação , Sistema Nervoso Simpático/efeitos dos fármacos , Nervo Vago/efeitos dos fármacos , Idoso , Idoso de 80 Anos ou mais , Barorreflexo/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Vasos Sanguíneos/efeitos dos fármacos , Eletrocardiografia , Feminino , Frequência Cardíaca/efeitos dos fármacos , Humanos , Masculino , Pessoa de Meia-Idade , Período Pós-Prandial , Postura , Caracteres Sexuais
13.
Am J Physiol Regul Integr Comp Physiol ; 307(11): R1292-302, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25274906

RESUMO

Neuronal stimulation by light is a novel approach in the emerging field of optogenetics, where genetic engineering is used to introduce light-activated channels. However, light is also capable of stimulating neurons even in the absence of genetic modifications through a range of physical and biological mechanisms. As a result, rigorous design of optogenetic experiments needs to take note of alternative and parallel effects of light illumination of neuronal tissues. Thus all matters relating to light penetration are critical to the development of studies using light-activated proteins. This paper discusses ways to quantify light, light penetration in tissue, as well as light stimulation of neurons in physiological conditions. We also describe the direct effect of light on neurons investigated at different sites.


Assuntos
Neurônios/fisiologia , Neurociências , Optogenética , Estimulação Luminosa , Física , Animais , Humanos , Luz
14.
Clin Exp Pharmacol Physiol ; 40(9): 602-9, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23781949

RESUMO

Respiratory neural networks can adapt to rapid environmental change or be altered over the long term by various inputs. The mechanisms that underlie the plasticity necessary for adaptive changes in breathing remain unclear. Acute intermittent hypoxia (AIH)-induced respiratory long-term facilitation (LTF) is one of the most extensively studied types of respiratory plasticity. Acute intermittent hypoxia-induced LTF is present in several respiratory motor outputs, innervating both pump muscles (i.e. diaphragm) and valve muscles (i.e. tongue, pharynx and larynx). Long-term facilitation is present in various species, including humans, and the expression of LTF is influenced by gender, age and genetics. Serotonin plays a key role in initiating and modulating plasticity at the level of respiratory motor neurons. Recently, multiple intracellular pathways have been elucidated that are capable of giving rise to respiratory LTF. These mainly activate the metabolic receptors coupled to Gq ('Q' pathway) and Gs ('S' pathway) proteins. Herein, we discuss AIH-induced respiratory LTF in animals and humans, as well as recent advances in our understanding of the synaptic and intracellular pathways underlying this form of plasticity. We also discuss the potential to use intermittent hypoxia to induce functional recovery following cervical spinal injury.


Assuntos
Hipóxia/fisiopatologia , Plasticidade Neuronal/fisiologia , Mecânica Respiratória/fisiologia , Animais , Humanos , Hipóxia/metabolismo , Respiração , Músculos Respiratórios/metabolismo , Músculos Respiratórios/fisiopatologia , Serotonina/metabolismo
15.
J Pharmacol Exp Ther ; 341(1): 213-24, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22262923

RESUMO

The rostral ventrolateral medulla (RVLM) regulates sympathetic vasomotor outflow and reflexes. Intracerebroventricular neuromedin U (NMU) increases sympathetic nerve activity (SNA), mean arterial pressure (MAP), and heart rate (HR), but the central nuclei that mediate these effects are unknown. In urethane-anesthetized, vagotomized, and artificially ventilated male Sprague-Dawley rats (n = 36) the effects of bilateral microinjection of NMU (50 nl, each side) into RVLM on cardiorespiratory variables, somatosympathetic reflex, arterial baroreflex, and chemoreflex were investigated. Microinjection of NMU into RVLM elicited a hypertension, tachycardia, and an increase in splanchnic SNA (SSNA) and lumbar SNA (LSNA) at lower doses (25 and 50 pmol). At higher dose (100 pmol), NMU caused a biphasic response, a brief hypertension and sympathoexcitation followed by prolonged hypotension and sympathoinhibition. The peak excitatory and inhibitory response was found at 100 pmol NMU with an increase in MAP, HR, SSNA, and LSNA of 36 mm Hg, 20 beats per minute, 34%, and 89%, respectively, and a decrease of 33 mm Hg, 25 beats per minute, 42%, and 52%, respectively, from baseline. NMU, in the RVLM, also increased phrenic nerve amplitude and the expiratory period and reduced the inspiratory period. NMU (100 pmol) attenuated the somatosympathetic reflex and the sympathoexcitatory and respiratory responses to hypoxia and hypercapnia. After NMU injection in RVLM, the maximum gain of the SSNA baroreflex function curve was increased, but that of the LSNA was reduced. The present study provides functional evidence for a complex differential modulatory activity of NMU on the cardiovascular and reflex responses that are integrated in the RVLM.


Assuntos
Barorreflexo/fisiologia , Pressão Sanguínea/fisiologia , Frequência Cardíaca/fisiologia , Bulbo/fisiologia , Neuropeptídeos/administração & dosagem , Mecânica Respiratória/fisiologia , Animais , Masculino , Microinjeções/métodos , Neuropeptídeos/fisiologia , Ratos , Ratos Sprague-Dawley , Sistema Nervoso Simpático/fisiologia
16.
Am J Physiol Regul Integr Comp Physiol ; 302(3): R365-72, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22129620

RESUMO

Hypertension is a major cause of morbidity. The neuropeptide catestatin [human chromogranin A-(352-372)] is a peptide product of the vesicular protein chromogranin A. Studies in the periphery and in vitro studies show that catestatin blocks nicotine-stimulated catecholamine release and interacts with ß-adrenoceptors and histamine receptors. Catestatin immunoreactivity is present in the rostral ventrolateral medulla (RVLM), a key site for blood pressure control in the brain stem. Recently, we reported that microinjection of catestatin into the RVLM is sympathoexcitatory and increases barosensitivity. Here, we report the effects of microinjection of catestatin (1 mM, 50 nl) into the caudal ventrolateral medulla (CVLM) in urethane-anesthetized, bilaterally vagotomized, artificially ventilated Sprague-Dawley rats (n = 8). We recorded resting arterial pressure, splanchnic sympathetic nerve activity, phrenic nerve activity, heart rate, and measured cardiovascular homeostatic reflexes. Homeostatic reflexes were evaluated by measuring cardiovascular responses to carotid baroreceptor and peripheral chemoreceptor activation. Catestatin decreased basal levels of arterial pressure (-23 ± 4 mmHg), sympathetic nerve activity (-26.6 ± 5.7%), heart rate (-19 ± 5 bpm), and phrenic nerve amplitude (-16.8 ± 3.3%). Catestatin caused a 15% decrease in phrenic inspiratory period (T(i)) and a 16% increase in phrenic expiratory period (T(e)) but had no net effect on the phrenic interburst interval (T(tot)). Catestatin decreased sympathetic barosensitivity by 63.6% and attenuated the peripheral chemoreflex (sympathetic nerve response to brief hypoxia; range decreased 39.9%; slope decreased 30.1%). The results suggest that catestatin plays an important role in central cardiorespiratory control.


Assuntos
Barorreflexo/efeitos dos fármacos , Células Quimiorreceptoras/efeitos dos fármacos , Cromogranina A/metabolismo , Bulbo/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Sistema Nervoso Simpático/efeitos dos fármacos , Simpatolíticos/farmacologia , Animais , Barorreflexo/fisiologia , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Células Quimiorreceptoras/citologia , Células Quimiorreceptoras/fisiologia , Cromogranina A/administração & dosagem , Cromogranina A/farmacologia , Frequência Cardíaca/efeitos dos fármacos , Frequência Cardíaca/fisiologia , Hipóxia/fisiopatologia , Masculino , Bulbo/citologia , Bulbo/fisiologia , Microinjeções , Modelos Animais , Fragmentos de Peptídeos/administração & dosagem , Fragmentos de Peptídeos/metabolismo , Nervo Frênico/efeitos dos fármacos , Nervo Frênico/fisiologia , Ratos , Ratos Sprague-Dawley , Sistema Nervoso Simpático/fisiologia , Simpatolíticos/administração & dosagem
17.
Am J Physiol Regul Integr Comp Physiol ; 303(6): R624-32, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22814666

RESUMO

Melanin-concentrating hormone (MCH) is a neuropeptide that acts to increase feeding behavior and decrease energy expenditure. The role of MCH in central cardiorespiratory regulation is still poorly understood. Experiments were conducted on urethane-anesthetized, vagotomized, and artificially ventilated male Sprague-Dawley rats (n = 22) to ascertain whether MCH modulates sympathetic vasomotor tone, as well as barosympathetic, chemosympathetic, and somatosympathetic reflexes at the level of the spinal cord. Intrathecal injection of 10 µl of MCH produced a dose-dependent hypotension, bradycardia, and sympathoinhibition. Peak response was observed following administration of 1 mM MCH, causing a decrease in mean arterial pressure of 39 ± 2 mmHg (P < 0.001), splanchnic sympathetic nerve activity of 78 ± 11% (P < 0.001), and heart rate of 87 ± 11 beats per minute (bpm) (P < 0.01). The two peaks of the somatosympathetic reflex were decreased by intrathecal MCH, 7 ± 3% (P < 0.01) and 31 ± 6% (P < 0.01), respectively, and the spinal component of the reflex was accentuated 96 ± 23% (P < 0.05), with respect to the baseline for MCH, compared with the two peaks and spinal component of the somatosympathetic reflex elicited following saline injection with respect to the baseline for saline. MCH decreased the sympathetic gain to 120 s of hyperoxic hypercapnea (10% CO(2) in 90% O(2)) and to 10-12 s poikilocapneic anoxia (100% N(2)) from 0.74 ± 0.14%/s to 0.23 ± 0.04%/s (P < 0.05) and 16.47 ± 3.2% to 4.35 ± 1.56% (P < 0.05), respectively. There was a 34% decrease in gain and a 62% decrease in range of the sympathetic baroreflex with intrathecal MCH. These data demonstrate that spinal MCH blunts the central regulation of sympathetic tone and adaptive sympathetic reflexes.


Assuntos
Fenômenos Fisiológicos Cardiovasculares/efeitos dos fármacos , Hormônios Hipotalâmicos/farmacologia , Melaninas/farmacologia , Hormônios Hipofisários/farmacologia , Reflexo/efeitos dos fármacos , Simpatolíticos/farmacologia , Animais , Hormônios Hipotalâmicos/administração & dosagem , Injeções Espinhais , Masculino , Melaninas/administração & dosagem , Hormônios Hipofisários/administração & dosagem , Ratos , Ratos Sprague-Dawley , Reflexo/fisiologia , Fenômenos Fisiológicos Respiratórios/efeitos dos fármacos , Sistema Nervoso Simpático/efeitos dos fármacos , Simpatolíticos/administração & dosagem
18.
Am J Physiol Regul Integr Comp Physiol ; 303(7): R719-26, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22874427

RESUMO

This study focuses on presympathetic neurons of the rostral ventrolateral medulla (RVLM) that regulate sympathetic vasomotor tone. Many neurotransmitters are colocalized in RVLM neurons and are released under specific conditions to modulate efferent homeostatic responses. Of particular interest here are two peptides colocalized in catecholaminergic RVLM neurons: catestatin and pituitary adenylate cyclase-activating polypeptide (PACAP). Chromogranin A-derived catestatin is a potent endogenous noncompetitive nicotinic and adrenoreceptor antagonist. Catestatin impairs adenylate cyclase and phospholipase C action: mechanisms engaged by PACAP. Although PACAP and catestatin are likely coreleased, the possible effects of this are unknown. We aimed to determine whether catestatin affects the normal sympathoexcitatory but isotensive responses to intrathecal PACAP. Urethane-anesthetized, vagotomized, ventilated Sprague-Dawley rats (n = 22) were given an intrathecal injection of catestatin at different times prior to intrathecal administration of PACAP-38. Arterial pressure, splanchnic sympathetic nerve activity, heart rate, and reflex responses to baroreceptor and chemoreceptor activation were recorded. The key findings of this study are that pretreatment with catestatin time dependently enhances the PACAP-38 effect on mean arterial pressure and enhances sympathetic barosensitivity and chemosensitivity. The time-scale of the effect of catestatin on the response to PACAP-38 strongly suggests that catestatin is either causing changes in gene expression to exert its effects, or modifying intracellular mechanisms normally engaged by PAC(1) receptors. The ability of catestatin pretreatment to enhance barosensitivity and chemosensitivity after PACAP-38 injection supports the hypothesis that catestatin manipulates the intracellular environment within sympathetic neurons in a way that increases responses to PACAP.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Cromogranina A/farmacologia , Fragmentos de Peptídeos/farmacologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Medula Espinal/efeitos dos fármacos , Animais , Sistema Cardiovascular/efeitos dos fármacos , Cromogranina A/administração & dosagem , Frequência Cardíaca/efeitos dos fármacos , Frequência Cardíaca/fisiologia , Injeções Espinhais , Masculino , Modelos Animais , Fragmentos de Peptídeos/administração & dosagem , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/administração & dosagem , Ratos , Ratos Sprague-Dawley , Medula Espinal/fisiologia , Sistema Nervoso Simpático/efeitos dos fármacos , Sistema Nervoso Simpático/fisiologia , Vasodilatadores/administração & dosagem , Vasodilatadores/farmacologia
19.
Exp Physiol ; 97(10): 1093-104, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22581750

RESUMO

Noxious somatic stimulation evokes respiratory and autonomic responses. The mechanisms underlying the responses and the manner in which they are co-ordinated are still unclear. The effects of activation of somatic nociceptive fibres on lumbar sympathetic nerve activity at slow (2-10 Hz) and fast frequency bands (100-1000 Hz) and the effects on respiratory-sympathetic coupling are unknown. In anaesthetized, artificially ventilated Sprague-Dawley rats under neuromuscular blockade, ensemble averaging of sympathetic activity following high-intensity single-pulse stimulation of the sciatic nerve revealed two peaks (~140 and ~250 ms) that were present at similar latencies whether or not slow or fast band filtering was used. Additionally, in the slow band of both lumbar and splanchnic sympathetic nerve activity, a third peak with a very slow latency (~650 ms) was apparent. In the respiratory system, activation of the sciatic nerve decreased the expiratory period when the stimulus occurred during the first half of expiration, but increased the expiratory period if the stimulus was delivered in the second half of the expiratory phase. The phase shifting of the respiratory cycle also impaired the respiratory-sympathetic coupling in both splanchnic and lumbar sympathetic nerve activity in the subsequent respiratory cycle. The findings suggest that noxious somatosympathetic responses reduce the co-ordination between respiration and perfusion by resetting the respiratory pattern generator.


Assuntos
Nervo Frênico/fisiologia , Reflexo/fisiologia , Sistema Respiratório/inervação , Nervo Isquiático/fisiologia , Sistema Nervoso Simpático/fisiologia , Animais , Estimulação Elétrica/métodos , Vértebras Lombares/fisiologia , Masculino , Bulbo/fisiologia , Neurônios/fisiologia , Ratos , Ratos Sprague-Dawley
20.
Purinergic Signal ; 8(4): 715-28, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22576313

RESUMO

In the nucleus tractus solitarii (NTS) of rats, blockade of extracellular ATP breakdown to adenosine reduces arterial blood pressure (AP) increases that follow stimulation of the hypothalamic defense area (HDA). The effects of ATP on NTS P2 receptors, during stimulation of the HDA, are still unclear. The aim of this study was to determine whether activation of P2 receptors in the NTS mediates cardiovascular responses to HDA stimulation. Further investigation was taken to establish if changes in hindlimb vascular conductance (HVC) elicited by electrical stimulation of the HDA, or activation of P2 receptors in the NTS, are relayed in the rostral ventrolateral medulla (RVLM); and if those responses depend on glutamate release by ATP acting on presynaptic terminals. In anesthetized and paralyzed rats, electrical stimulation of the HDA increased AP and HVC. Blockade of P2 or glutamate receptors in the NTS, with bilateral microinjections of suramin (10 mM) or kynurenate (50 mM) reduced only the evoked increase in HVC by 75 % or more. Similar results were obtained with the blockade combining both antagonists. Blockade of P2 and glutamate receptors in the RVLM also reduced the increases in HVC to stimulation of the HDA by up to 75 %. Bilateral microinjections of kynurenate in the RVLM abolished changes in AP and HVC to injections of the P2 receptor agonist α,ß-methylene ATP (20 mM) into the NTS. The findings suggest that HDA-NTS-RVLM pathways in control of HVC are mediated by activation of P2 and glutamate receptors in the brainstem in alerting-defense reactions.


Assuntos
Membro Posterior/irrigação sanguínea , Receptores de Glutamato/metabolismo , Receptores Purinérgicos P2/metabolismo , Núcleo Solitário/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Animais , Pressão Sanguínea/efeitos dos fármacos , Hipotensão/metabolismo , Ácido Cinurênico/farmacologia , Masculino , Ratos , Ratos Wistar , Núcleo Solitário/metabolismo , Suramina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA