Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Biomed Sci ; 29(1): 45, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35765029

RESUMO

BACKGROUND: In Neisseria meningitidis the HrpA/HrpB two-partner secretion system (TPS) was implicated in diverse functions including meningococcal competition, biofilm formation, adherence to epithelial cells, intracellular survival and vacuolar escape. These diverse functions could be attributed to distinct domains of secreted HrpA. METHODS: A yeast two-hybrid screening, in vitro pull-down assay and immunofluorescence microscopy experiments were used to investigate the interaction between HrpA and the dynein light-chain, Tctex-type 1 (DYNLT1). In silico modeling was used to analyze HrpA structure. Western blot analysis was used to investigate apoptotic and pyroptotic markers. RESULTS: The HrpA carboxy-terminal region acts as a manganese-dependent cell lysin, while the results of a yeast two-hybrid screening demonstrated that the HrpA middle region has the ability to bind the dynein light-chain, Tctex-type 1 (DYNLT1). This interaction was confirmed by in vitro pull-down assay and immunofluorescence microscopy experiments showing co-localization of N. meningitidis with DYNLT1 in infected epithelial cells. In silico modeling revealed that the HrpA-M interface interacting with the DYNLT1 has similarity with capsid proteins of neurotropic viruses that interact with the DYNLT1. Indeed, we found that HrpA plays a key role in infection of and meningococcal trafficking within neuronal cells, and is implicated in the modulation of the balance between apoptosis and pyroptosis. CONCLUSIONS: Our findings revealed that N. meningitidis is able to effectively infect and survive in neuronal cells, and that this ability is dependent on HrpA, which establishes a direct protein-protein interaction with DYNLTI in these cells, suggesting that the HrpA interaction with dynein could be fundamental for N. meningitidis spreading inside the neurons. Moreover, we found that the balance between apoptotic and pyroptotic pathways is heavily affected by HrpA.


Assuntos
Dineínas , Neisseria meningitidis , Dineínas/química , Dineínas/metabolismo , Células Epiteliais/metabolismo , Neisseria meningitidis/metabolismo , Piroptose , Saccharomyces cerevisiae/metabolismo
2.
Microb Ecol ; 76(1): 258-271, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29270661

RESUMO

Recently, genetic approaches have revealed a surprising bacterial world as well as a growing knowledge of the enormous distribution of animal-bacterial interactions. In the present study, the diversity of the microorganisms associated to the hydroid Aglaophenia octodonta was studied with epifluorescence, optical, and scanning electron microscopy. Small subunit ribosomal RNA gene sequencing with "universal" and taxon-specific primers allowed the assignment of the microalgae to Symbiodinium and the peritrich ciliates to Pseudovorticella, while the luminous vibrios were identified as Vibrio jasicida of the Harvey clade. To understand the possible relationships among Vibrio jasicida, Symbiodinium, A. octodonta, and Pseudovorticella, specific treatments were conducted in microcosm experiments, with the antibiotic ampicillin and other substances that interfere with bacterial and hydroid metabolism. Treatment of A. octodonta with ampicillin resulted in a decrease of bacterial luminescence followed by Pseudovorticella detachment and Symbiodinium expulsion and suggesting that these microorganisms form a "consortium" with beneficial metabolic interdependence. This hypothesis was reinforced by the evidence that low concentrations of hydrogen peroxide, which stimulate the bacterial oxidative metabolism and luminescence by releasing oxygen, were able to counteract the detrimental effect of ampicillin on the stability of the studied A. octodonta association. A model is proposed in which microalgae that release oxygen during photosynthesis are useful to luminous bacteria for their metabolism and for establishing/maintaining symbiosis leading to a close alliance and mutual benefit of the system A. octodonta-Vibrio jasicida-Pseudovorticella sp.-Symbiodinium sp.


Assuntos
Interações entre Hospedeiro e Microrganismos/fisiologia , Hidrozoários/microbiologia , Microbiota/fisiologia , Ampicilina/farmacologia , Animais , Antibacterianos/farmacologia , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Biodiversidade , Dinoflagellida/efeitos dos fármacos , Dinoflagellida/genética , Dinoflagellida/isolamento & purificação , Dinoflagellida/fisiologia , Peróxido de Hidrogênio , Hidrozoários/classificação , Hidrozoários/citologia , Hidrozoários/efeitos dos fármacos , Itália , Microalgas/classificação , Microalgas/efeitos dos fármacos , Microalgas/genética , Microalgas/isolamento & purificação , Microbiota/efeitos dos fármacos , Microbiota/genética , Oligoimenóforos/classificação , Oligoimenóforos/genética , Oligoimenóforos/isolamento & purificação , Oligoimenóforos/fisiologia , Oxigênio , Filogenia , RNA Ribossômico 18S/genética , Água do Mar , Simbiose , Vibrio/efeitos dos fármacos , Vibrio/genética , Vibrio/isolamento & purificação , Vibrio/fisiologia
3.
BMC Plant Biol ; 17(1): 30, 2017 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-28249605

RESUMO

BACKGROUND: A chemical cross-talk between plants and insects is required in order to achieve a successful co-adaptation. In response to herbivory, plants produce specific compounds, and feeding insects respond adequately7 to molecules produced by plants. Here we show the role of the gut microbial community of the mint beetle Chrysolina herbacea in the chemical cross-talk with Mentha aquatica (or watermint). RESULTS: By using two-dimensional gas chromatography-mass spectrometry we first evaluated the chemical patterns of both M. aquatica leaf and frass volatiles extracted by C. herbacea males and females feeding on plants, and observed marked differences between males and females volatiles. The sex-specific chemical pattern of the frass paralleled with sex-specific distribution of cultivable gut bacteria. Indeed, all isolated gut bacteria from females belonged to either α- or γ-Proteobacteria, whilst those from males were γ-Proteobacteria or Firmicutes. We then demonstrated that five Serratia marcescens strains from females possessed antibacterial activity against bacteria from males belonging to Firmicutes suggesting competition by production of antimicrobial compounds. By in vitro experiments, we lastly showed that the microbial communities from the two sexes were associated to specific metabolic patterns with respect to their ability to biotransform M. aquatica terpenoids, and metabolize them into an array of compounds with possible pheromone activity. CONCLUSIONS: Our data suggest that cultivable gut bacteria of Chrysolina herbacea males and females influence the volatile blend of herbivory induced Mentha aquatica volatiles in a sex-specific way.


Assuntos
Adaptação Biológica/fisiologia , Besouros/microbiologia , Microbioma Gastrointestinal , Mentha/química , Compostos Orgânicos Voláteis/farmacologia , Adaptação Biológica/efeitos dos fármacos , Animais , Bactérias/genética , Besouros/efeitos dos fármacos , Besouros/fisiologia , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/genética , Herbivoria , Masculino , Mentha/fisiologia , Óleos Voláteis/farmacocinética , Óleos Voláteis/farmacologia , Filogenia , Folhas de Planta/química , RNA Ribossômico 16S , Compostos Orgânicos Voláteis/farmacocinética
4.
Microb Ecol ; 67(1): 186-94, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24194098

RESUMO

Vibrios are among the most abundant culturable microbes in aquatic environments. They can be either free-living in the water column or associated with several marine organisms as mutualists, saprophytes, or parasites. In the present study we analysed vibrios abundance and diversity in the mucus of the polychaete Myxicola infundibulum, complementing culture-based with molecular methods. Vibrios reached 4.6 × 10(3) CFU mL(-1) thus representing a conspicuous component of the heterotrophic culturable bacteria. In addition, luminous vibrios accounted for about 60% of the total culturable vibrios in the mucus. The isolates were assigned to: Vibrio gigantis, Vibrio fischeri, Vibrio jasicida, Vibrio crassostreae, Vibrio kanaloae, and Vibrio xuii. Two Vibrio isolates (MI-13 and MI-15) may belong to a new species. We also tested the ability of the Vibrio isolates to grow on M. infundibulum mucus as the sole carbon source. All strains showed appreciable growth in the presence of mucus, leading us to conclude that this matrix, which is abundant and covers the animal entirely, may represent a microcosm and a food source for some bacteria, playing a crucial role in the structuring of a mucus-associated beneficial microbial community. Moreover, the trophic relationship between vibrios and M. infundibulum mucus could be enhanced by the protection that mucus offers to vibrios. The results of this study represent a contribution to the growing evidence for complex and dynamic invertebrate-microbe associations present in nature and highlight the importance of exploring relationships that Vibrio species establish with marine invertebrates.


Assuntos
Filogenia , Poliquetos/microbiologia , Vibrio/classificação , Animais , Contagem de Colônia Microbiana , DNA Bacteriano/genética , Itália , Mar Mediterrâneo , Muco/microbiologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vibrio/genética , Vibrio/isolamento & purificação
5.
Int J Syst Evol Microbiol ; 63(Pt 1): 72-79, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22328613

RESUMO

Strain SPC-1(T) was isolated from the phyllosphere of Cynara cardunculus L. var. sylvestris (Lamk) Fiori (wild cardoon), a Mediterranean native plant considered to be the wild ancestor of the globe artichoke and cultivated cardoon. This Gram-stain-negative, catalase-positive, oxidase-negative, non-spore-forming, rod-shaped and non-motile strain secreted copious amounts of an exopolysaccharide, formed slimy, viscous, orange-pigmented colonies and grew optimally at around pH 6.0-6.5 and 26-30 °C in the presence of 0-0.5 % NaCl. Phylogenetic analysis based on comparisons of 16S rRNA gene sequences demonstrated that SPC-1(T) clustered together with species of the genus Sphingomonas sensu stricto. The G+C content of the DNA (66.1 mol%), the presence of Q-10 as the predominant ubiquinone, sym-homospermidine as the predominant polyamine, 2-hydroxymyristic acid (C(14 : 0) 2-OH) as the major hydroxylated fatty acid, the absence of 3-hydroxy fatty acids and the presence of sphingoglycolipid supported this taxonomic position. 16S rRNA gene sequence analysis showed that SPC-1(T) was most closely related to Sphingomonas hankookensis ODN7(T), Sphingomonas insulae DS-28(T) and Sphingomonas panni C52(T) (98.19, 97.91 and 97.11 % sequence similarities, respectively). However, DNA-DNA hybridization analysis did not reveal any relatedness at the species level. Further differences were apparent in biochemical traits, and fatty acid, quinone and polyamine profiles leading us to conclude that strain SPC-1(T) represents a novel species of the genus Sphingomonas, for which the name Sphingomonas cynarae sp. nov. is proposed; the type strain is SPC-1(T) ( = JCM 17498(T) = ITEM 13494(T)). A component analysis of the exopolysaccharide suggested that it represents a novel type of sphingan containing glucose, rhamnose, mannose and galactose, while glucuronic acid, which is commonly found in sphingans, was not detected.


Assuntos
Cynara/microbiologia , Filogenia , Polissacarídeos Bacterianos/biossíntese , Sphingomonas/classificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/análise , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Poliaminas/análise , RNA Ribossômico 16S/genética , Sphingomonas/genética , Sphingomonas/isolamento & purificação , Ubiquinona/análise
6.
Sci Rep ; 8(1): 12022, 2018 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-30104660

RESUMO

A considerable body of evidence links together mitochondrial dysfunctions, toxic action of metalloid oxyanions, and system and neurodegenerative disorders. In this study we have used the model yeast Saccharomyces cerevisiae to investigate the genetic determinants associated with tellurite resistance/sensitivity. Nitrosoguanidine-induced K2TeO3-resistant mutants were isolated, and one of these mutants, named Sc57-Te5R, was characterized. Both random spore analysis and tetrad analysis and growth of heterozygous (TeS/Te5R) diploid from Sc57-Te5R mutant revealed that nuclear and recessive mutation(s) was responsible for the resistance. To get insight into the mechanisms responsible for K2TeO3-resistance, RNA microarray analyses were performed with K2TeO3-treated and untreated Sc57-Te5R cells. A total of 372 differentially expressed loci were identified corresponding to 6.37% of the S. cerevisiae transcriptome. Of these, 288 transcripts were up-regulated upon K2TeO3 treatment. About half of up-regulated transcripts were associated with the following molecular functions: oxidoreductase activity, structural constituent of cell wall, transporter activity. Comparative whole-genome sequencing allowed us to identify nucleotide variants distinguishing Sc57-Te5R from parental strain Sc57. We detected 15 CDS-inactivating mutations, and found that 3 of them affected genes coding mitochondrial ribosomal proteins (MRPL44 and NAM9) and mitochondrial ribosomal biogenesis (GEP3) pointing out to alteration of mitochondrial ribosome as main determinant of tellurite resistance.


Assuntos
Proteínas Mitocondriais/metabolismo , Proteínas Ribossômicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Telúrio/toxicidade , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Microscopia Eletrônica de Transmissão , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Proteínas Mitocondriais/genética , Mutação , Proteínas Ribossômicas/genética , Ribossomos/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/genética
7.
AMB Express ; 8(1): 113, 2018 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-29992518

RESUMO

The olive oil is an unfavorable substrate for microbial survival and growth. Only few microorganisms use olive oil fatty acids as carbon and energy sources, and survive in the presence of olive oil anti-microbial components. In this study, we have evaluated the occurrence of microorganisms in 1-year-stored extra-virgin olive oil samples. We detected the presence of bacterial and yeast species with a recurrence of the bacterium Stenotrophomonas rhizophila and yeast Sporobolomyces roseus. We then assayed the ability of all isolates to grow in a mineral medium supplemented with a commercial extra-virgin olive oil as a sole carbon and energy source, and analyzed the utilization of olive oil fatty acids during their growth. We finally focused on two bacterial isolates belonging to the species Pantoea septica. Both these isolates produce carotenoids, and one of them synthesizes bioemulsifiers enabling the bacteria to better survive/growth in this unfavorable substrate. Analyses point to a mixture of glycolipids with glucose, galactose and xylose as carbohydrate moieties whereas the lipid domain was constituted by C6-C10 ß-hydroxy carboxylic acids.

8.
Mar Environ Res ; 125: 90-98, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28189875

RESUMO

Understanding the mechanisms underlying the complex seaweed-bacteria associations in nature may provide information on the fitness of an invasive host. This may require the use of different approaches. In this study, we employed, for the first time, the Biolog system-Ecoplates™ to analyze the functional diversity of the culturable fraction of the bacterial assemblages associated with the surface of Caulerpa cylindracea, the invasive seaweed of the Mediterranean Sea. Seaweed samples were collected at five sites across the basin. A high similarity in the bacterial activity, expressed as Average Well Color Development (AWCD), among the study sites was observed. Culturable heterotrophic bacteria at 22 °C showed mean values ranging from 1.4 × 105 CFU g-1 at Porto Cesareo (Ionian Sea, Italy) to 5.8 × 106 CFU g-1 at Othonoi, Diapontine Island (Ionian Sea, Greece). The analysis of the DNA sequences on isolated bacteria demonstrated that the genera Shewanella, Marinobacter, Vibrio, Granulosicoccus and the family Rhodobacteraceae are consistently present on C. cylindracea, irrespective of its geographical origin. The present study provided new insights into the complex association between bacteria and this algal species, suggesting a specific composition and function of the associated culturable bacteria across the basin.


Assuntos
Bactérias/crescimento & desenvolvimento , Caulerpa/microbiologia , Monitoramento Ambiental , Água do Mar/microbiologia , Bactérias/classificação , Ecossistema , Mar Mediterrâneo
9.
Gene ; 559(2): 177-83, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25644076

RESUMO

Mitochondria are eukaryotic organelles which contain the own genetic material and evolved from free-living Eubacteria, namely hydrogen-producing Alphaproteobacteria. Since 1965, biologists provided, by research at molecular level, evidence for the prokaryotic origins of mitochondria. However, determining the precise origins of mitochondria is challenging due to inherent difficulties in phylogenetically reconstructing ancient evolutionary events. The use of new tools to evidence the prokaryotic origin of mitochondria could be useful to gain an insight into the bacterial endosymbiotic event that resulted in the permanent acquisition of bacteria, from the ancestral cell, that through time were transformed into mitochondria. Electron microscopy has shown that both proteobacterial and yeast cells during their growth in the presence of increasing amount of tellurite resulted in dose-dependent blackening of the culture due to elemental tellurium (Te(0)) that formed large deposits either along the proteobacterial membrane or along the yeast cell wall and mitochondria. Since the mitochondrial inner membrane composition is similar to that of proteobacterial membrane, in the present work we evidenced the black tellurium deposits on both, cell wall and mitochondria of ρ(+) and respiratory deficient ρ(-) mutants of yeast. A possible role of tellurite in studying the evolutionary origins of mitochondria will be discussed.


Assuntos
Telúrio/metabolismo , Evolução Biológica , DNA Mitocondrial/metabolismo , Escherichia coli/metabolismo , Escherichia coli/ultraestrutura , Halobacterium salinarum/metabolismo , Halobacterium salinarum/ultraestrutura , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Membranas Mitocondriais/metabolismo , Neisseria lactamica/metabolismo , Neisseria lactamica/ultraestrutura , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Sphingomonas/metabolismo , Sphingomonas/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA