RESUMO
Although plasma proteins have important roles in biological processes and are the direct targets of many drugs, the genetic factors that control inter-individual variation in plasma protein levels are not well understood. Here we characterize the genetic architecture of the human plasma proteome in healthy blood donors from the INTERVAL study. We identify 1,927 genetic associations with 1,478 proteins, a fourfold increase on existing knowledge, including trans associations for 1,104 proteins. To understand the consequences of perturbations in plasma protein levels, we apply an integrated approach that links genetic variation with biological pathway, disease, and drug databases. We show that protein quantitative trait loci overlap with gene expression quantitative trait loci, as well as with disease-associated loci, and find evidence that protein biomarkers have causal roles in disease using Mendelian randomization analysis. By linking genetic factors to diseases via specific proteins, our analyses highlight potential therapeutic targets, opportunities for matching existing drugs with new disease indications, and potential safety concerns for drugs under development.
Assuntos
Proteínas Sanguíneas/genética , Genômica , Proteoma/genética , Feminino , Fator de Crescimento de Hepatócito/genética , Humanos , Doenças Inflamatórias Intestinais/genética , Masculino , Mutação de Sentido Incorreto/genética , Mieloblastina/genética , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Proteínas Proto-Oncogênicas/genética , Locos de Características Quantitativas/genética , Vasculite/genética , alfa 1-Antitripsina/genéticaRESUMO
The discovery of the Janus kinase (JAK)-signal transducer and activator of transcripton (STAT) signaling pathway, a landmark in cell biology, provided a simple mechanism for gene regulation that dramatically advanced our understanding of the action of hormones, interferons, colony-stimulating factors, and interleukins. As we learn more about the complexities of immune responses, new insights into the functions of this pathway continue to be revealed, aided by technology that permits genome-wide views. As we celebrate the 20(th) anniversary of the discovery of this paradigm in cell signaling, it is particularly edifying to see how this knowledge has rapidly been translated to human immune disease. Not only have genome-wide association studies demonstrated that this pathway is highly relevant to human autoimmunity, but targeting JAKs is now a reality in immune-mediated disease.
Assuntos
Doenças Autoimunes/metabolismo , Janus Quinases/metabolismo , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais , Doenças Autoimunes/genética , Doenças Autoimunes/terapia , Autoimunidade , Citocinas/imunologia , Citocinas/metabolismo , Regulação da Expressão Gênica , Humanos , Imunidade Inata , Interferons/imunologia , Interferons/metabolismo , Janus Quinases/antagonistas & inibidores , Janus Quinases/imunologia , Fatores de Transcrição STAT/imunologiaRESUMO
Understanding the implications of genome-wide association studies (GWAS) for disease biology requires both identification of causal variants and definition of how these variants alter gene function. The non-coding triallelic dinucleotide polymorphism CCR6DNP is associated with risk for rheumatoid arthritis, and is considered likely causal because allelic variation correlates with expression of the chemokine receptor CCR6. Using transcription activator-like effector nuclease (TALEN) gene editing, we confirmed that CCR6DNP regulates CCR6. To identify the associated transcription factor, we applied a novel assay, Flanking Restriction Enhanced Pulldown (FREP), to identify specific association of poly (ADP-ribose) polymerase 1 (PARP-1) with CCR6DNP consistent with the established allelic risk hierarchy. Correspondingly, manipulation of PARP-1 expression or activity impaired CCR6 expression in several lineages. These findings show that CCR6DNP is a causal variant through which PARP-1 regulates CCR6, and introduce a highly efficient approach to interrogate non-coding genetic polymorphisms associated with human disease.
Assuntos
Artrite Reumatoide/genética , Poli(ADP-Ribose) Polimerase-1/genética , Polimorfismo Genético , Receptores CCR6/genética , Linhagem Celular , Células HCT116 , Humanos , Poli(ADP-Ribose) Polimerase-1/metabolismo , Receptores CCR6/metabolismoRESUMO
Despite progress in defining human leukocyte antigen (HLA) alleles for anti-citrullinated-protein-autoantibody-positive (ACPA(+)) rheumatoid arthritis (RA), identifying HLA alleles for ACPA-negative (ACPA(-)) RA has been challenging because of clinical heterogeneity within clinical cohorts. We imputed 8,961 classical HLA alleles, amino acids, and SNPs from Immunochip data in a discovery set of 2,406 ACPA(-) RA case and 13,930 control individuals. We developed a statistical approach to identify and adjust for clinical heterogeneity within ACPA(-) RA and observed independent associations for serine and leucine at position 11 in HLA-DRß1 (p = 1.4 × 10(-13), odds ratio [OR] = 1.30) and for aspartate at position 9 in HLA-B (p = 2.7 × 10(-12), OR = 1.39) within the peptide binding grooves. These amino acid positions induced associations at HLA-DRB1(∗)03 (encoding serine at 11) and HLA-B(∗)08 (encoding aspartate at 9). We validated these findings in an independent set of 427 ACPA(-) case subjects, carefully phenotyped with a highly sensitive ACPA assay, and 1,691 control subjects (HLA-DRß1 Ser11+Leu11: p = 5.8 × 10(-4), OR = 1.28; HLA-B Asp9: p = 2.6 × 10(-3), OR = 1.34). Although both amino acid sites drove risk of ACPA(+) and ACPA(-) disease, the effects of individual residues at HLA-DRß1 position 11 were distinct (p < 2.9 × 10(-107)). We also identified an association with ACPA(+) RA at HLA-A position 77 (p = 2.7 × 10(-8), OR = 0.85) in 7,279 ACPA(+) RA case and 15,870 control subjects. These results contribute to mounting evidence that ACPA(+) and ACPA(-) RA are genetically distinct and potentially have separate autoantigens contributing to pathogenesis. We expect that our approach might have broad applications in analyzing clinical conditions with heterogeneity at both major histocompatibility complex (MHC) and non-MHC regions.
Assuntos
Alelos , Artrite Reumatoide/genética , Heterogeneidade Genética , Antígenos HLA/genética , Estudos de Casos e Controles , HumanosRESUMO
Systemic lupus erythematosus (SLE) is an autoimmune disease influenced by genetic and environmental factors. We carried out a genome-wide association scan and replication study and found an association between SLE and a variant in TNFAIP3 (rs5029939, meta-analysis P = 2.89 x 10(-12), OR = 2.29). We also found evidence of two independent signals near TNFAIP3 associated with SLE, including one previously associated with rheumatoid arthritis (RA). These results establish that variants near TNFAIP3 contribute to differential risk of SLE and RA.
Assuntos
Cromossomos Humanos Par 6 , Peptídeos e Proteínas de Sinalização Intracelular/genética , Lúpus Eritematoso Sistêmico/genética , Proteínas Nucleares/genética , Artrite Reumatoide/genética , Proteínas de Ligação a DNA , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Polimorfismo de Nucleotídeo Único , Proteína 3 Induzida por Fator de Necrose Tumoral alfaRESUMO
The extent to which variants in the protein-coding sequence of genes contribute to risk of rheumatoid arthritis (RA) is unknown. In this study, we addressed this issue by deep exon sequencing and large-scale genotyping of 25 biological candidate genes located within RA risk loci discovered by genome-wide association studies (GWASs). First, we assessed the contribution of rare coding variants in the 25 genes to the risk of RA in a pooled sequencing study of 500 RA cases and 650 controls of European ancestry. We observed an accumulation of rare nonsynonymous variants exclusive to RA cases in IL2RA and IL2RB (burden test: p = 0.007 and p = 0.018, respectively). Next, we assessed the aggregate contribution of low-frequency and common coding variants to the risk of RA by dense genotyping of the 25 gene loci in 10,609 RA cases and 35,605 controls. We observed a strong enrichment of coding variants with a nominal signal of association with RA (p < 0.05) after adjusting for the best signal of association at the loci (p(enrichment) = 6.4 × 10(-4)). For one locus containing CD2, we found that a missense variant, rs699738 (c.798C>A [p.His266Gln]), and a noncoding variant, rs624988, reside on distinct haplotypes and independently contribute to the risk of RA (p = 4.6 × 10(-6)). Overall, our results indicate that variants (distributed across the allele-frequency spectrum) within the protein-coding portion of a subset of biological candidate genes identified by GWASs contribute to the risk of RA. Further, we have demonstrated that very large sample sizes will be required for comprehensively identifying the independent alleles contributing to the missing heritability of RA.
Assuntos
Artrite Reumatoide/genética , Frequência do Gene , Predisposição Genética para Doença , Variação Genética , Polimorfismo de Nucleotídeo Único , Éxons , Estudo de Associação Genômica Ampla , Humanos , Fatores de RiscoRESUMO
OBJECTIVES: A recent study identified 16 genetic variants associated with N-glycosylation of human IgG. Several of the genomic regions where these single nucleotide polymorphisms (SNPs) reside have also been associated with autoimmune disease (AID) susceptibility, suggesting there may be pleiotropy (genetic sharing) between loci controlling both N-glycosylation and AIDs. We investigated this by testing variants associated with levels of IgG N-glycosylation for association with rheumatoid arthritis (RA) susceptibility using a Mendelian randomisation study, and testing a subset of these variants in a less well-powered study of treatment response and severity. METHODS: SNPs showing association with IgG N-glycosylation were analysed for association with RA susceptibility in 14 361 RA cases and 43 923 controls. Five SNPs were tested for association with response to anti-tumour necrosis factor (TNF) therapy in 1081 RA patient samples and for association with radiological disease severity in 342 patients. RESULTS: Only one SNP (rs9296009) associated with N-glycosylation showed an association (p=6.92×10(-266)) with RA susceptibility, although this was due to linkage disequilibrium with causal human leukocyte antigen (HLA) variants. Four regions of the genome harboured SNPs associated with both traits (shared loci); although statistical analysis indicated that the associations observed for the two traits are independent. No SNPs showed association with response to anti-TNF therapy. One SNP rs12342831 was modestly associated with Larsen score (p=0.05). CONCLUSIONS: In a large, well-powered cohort of RA patients, we show SNPs driving levels of N-glycosylation have no association with RA susceptibility, indicating colocalisation of associated SNPs are not necessarily indicative of a shared genetic background or a role for glycosylation in disease susceptibility.
Assuntos
Artrite Reumatoide/genética , Imunoglobulina G/genética , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/imunologia , Produtos Biológicos/uso terapêutico , Estudos de Casos e Controles , Loci Gênicos , Predisposição Genética para Doença , Glicosilação , Humanos , Desequilíbrio de Ligação , Análise da Randomização Mendeliana/métodos , Polimorfismo de Nucleotídeo Único , Índice de Gravidade de Doença , Resultado do Tratamento , Fator de Necrose Tumoral alfa/antagonistas & inibidoresRESUMO
Recent work has shown that much of the missing heritability of complex traits can be resolved by estimates of heritability explained by all genotyped SNPs. However, it is currently unknown how much heritability is missing due to poor tagging or additional causal variants at known GWAS loci. Here, we use variance components to quantify the heritability explained by all SNPs at known GWAS loci in nine diseases from WTCCC1 and WTCCC2. After accounting for expectation, we observed all SNPs at known GWAS loci to explain 1.29 x more heritability than GWAS-associated SNPs on average (P=3.3 x 10â»5). For some diseases, this increase was individually significant: 2.07 x for Multiple Sclerosis (MS) (P=6.5 x 10â»9) and 1.48 x for Crohn's Disease (CD) (P = 1.3 x 10⻳); all analyses of autoimmune diseases excluded the well-studied MHC region. Additionally, we found that GWAS loci from other related traits also explained significant heritability. The union of all autoimmune disease loci explained 7.15 x more MS heritability than known MS SNPs (P < 1.0 x 10⻹6 and 2.20 x more CD heritability than known CD SNPs (P = 6.1 x 10â»9), with an analogous increase for all autoimmune diseases analyzed. We also observed significant increases in an analysis of > 20,000 Rheumatoid Arthritis (RA) samples typed on ImmunoChip, with 2.37 x more heritability from all SNPs at GWAS loci (P = 2.3 x 10â»6) and 5.33 x more heritability from all autoimmune disease loci (P < 1 x 10⻹6 compared to known RA SNPs (including those identified in this cohort). Our methods adjust for LD between SNPs, which can bias standard estimates of heritability from SNPs even if all causal variants are typed. By comparing adjusted estimates, we hypothesize that the genome-wide distribution of causal variants is enriched for low-frequency alleles, but that causal variants at known GWAS loci are skewed towards common alleles. These findings have important ramifications for fine-mapping study design and our understanding of complex disease architecture.
Assuntos
Loci Gênicos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Alelos , Artrite Reumatoide/genética , Doença de Crohn/genética , Humanos , Desequilíbrio de Ligação , Modelos Teóricos , Esclerose Múltipla/genéticaRESUMO
Although genetic and non-genetic studies in mouse and human implicate the CD40 pathway in rheumatoid arthritis (RA), there are no approved drugs that inhibit CD40 signaling for clinical care in RA or any other disease. Here, we sought to understand the biological consequences of a CD40 risk variant in RA discovered by a previous genome-wide association study (GWAS) and to perform a high-throughput drug screen for modulators of CD40 signaling based on human genetic findings. First, we fine-map the CD40 risk locus in 7,222 seropositive RA patients and 15,870 controls, together with deep sequencing of CD40 coding exons in 500 RA cases and 650 controls, to identify a single SNP that explains the entire signal of association (rs4810485, Pâ=â1.4×10(-9)). Second, we demonstrate that subjects homozygous for the RA risk allele have â¼33% more CD40 on the surface of primary human CD19+ B lymphocytes than subjects homozygous for the non-risk allele (Pâ=â10(-9)), a finding corroborated by expression quantitative trait loci (eQTL) analysis in peripheral blood mononuclear cells from 1,469 healthy control individuals. Third, we use retroviral shRNA infection to perturb the amount of CD40 on the surface of a human B lymphocyte cell line (BL2) and observe a direct correlation between amount of CD40 protein and phosphorylation of RelA (p65), a subunit of the NF-κB transcription factor. Finally, we develop a high-throughput NF-κB luciferase reporter assay in BL2 cells activated with trimerized CD40 ligand (tCD40L) and conduct an HTS of 1,982 chemical compounds and FDA-approved drugs. After a series of counter-screens and testing in primary human CD19+ B cells, we identify 2 novel chemical inhibitors not previously implicated in inflammation or CD40-mediated NF-κB signaling. Our study demonstrates proof-of-concept that human genetics can be used to guide the development of phenotype-based, high-throughput small-molecule screens to identify potential novel therapies in complex traits such as RA.
Assuntos
Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/genética , Antígenos CD40/antagonistas & inibidores , Antígenos CD40/genética , Avaliação Pré-Clínica de Medicamentos , Alelos , Animais , Antígenos CD19/genética , Artrite Reumatoide/patologia , Linfócitos B/citologia , Linfócitos B/metabolismo , Antígenos CD40/metabolismo , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Ensaios de Triagem em Larga Escala , Humanos , Camundongos , NF-kappa B/genética , NF-kappa B/metabolismo , Locos de Características Quantitativas/genética , Transdução de Sinais , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologiaRESUMO
We have previously shown that rheumatoid arthritis (RA) risk alleles overlap between different ethnic groups. Here, we utilize a multiethnic approach to show that we can effectively discover RA risk alleles. Thirteen putatively associated SNPs that had not yet exceeded genome-wide significance (p < 5 × 10(-8)) in our previous RA genome-wide association study (GWAS) were analyzed in independent sample sets consisting of 4,366 cases and 17,765 controls of European, African American, and East Asian ancestry. Additionally, we conducted an overall association test across all 65,833 samples (a GWAS meta-analysis plus the replication samples). Of the 13 SNPs investigated, four were significantly below the study-wide Bonferroni corrected p value threshold (p < 0.0038) in the replication samples. Two SNPs (rs3890745 at the 1p36 locus [p = 2.3 × 10(-12)] and rs2872507 at the 17q12 locus [p = 1.7 × 10(-9)]) surpassed genome-wide significance in all 16,659 RA cases and 49,174 controls combined. We used available GWAS data to fine map these two loci in Europeans and East Asians, and we found that the same allele conferred risk in both ethnic groups. A series of bioinformatic analyses identified TNFRSF14-MMEL1 at the 1p36 locus and IKZF3-ORMDL3-GSDMB at the 17q12 locus as the genes most likely associated with RA. These findings demonstrate empirically that a multiethnic approach is an effective strategy for discovering RA risk loci, and they suggest that combining GWASs across ethnic groups represents an efficient strategy for gaining statistical power.
Assuntos
Artrite Reumatoide/etnologia , Artrite Reumatoide/genética , Cromossomos Humanos Par 17 , Cromossomos Humanos Par 1 , Loci Gênicos , Alelos , Estudos de Casos e Controles , Biologia Computacional/métodos , Etnicidade/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/métodos , Genótipo , Humanos , Fator de Transcrição Ikaros/genética , Desequilíbrio de Ligação , Proteínas de Membrana/genética , Proteínas de Neoplasias/genética , Neprilisina/genética , Polimorfismo de Nucleotídeo Único , Membro 14 de Receptores do Fator de Necrose Tumoral/genéticaRESUMO
BACKGROUND: Diuretic-induced gout might occur only among those with a genetic predisposition to hyperuricaemia, as suggested by a recent study with 108 self-reported gout cases. METHODS: We examined the role of urate genes on the risk of diuretic-induced incident gout in 6850 women from the Nurses' Health Study (NHS) and in 4223 men from the Health Professionals Follow-up Study (HPFS). Two published genetic risk scores (GRSs) were calculated using urate-associated single-nucleotide polymorphisms for 8 (GRS8) and 29 genes (GRS29). RESULTS: Our analyses included 727 and 354 confirmed incident gout cases in HPFS and NHS, respectively. The multivariate relative risk (RR) for diuretic use was 2.20 and 1.69 among those with GRS8 < and ≥ the median (p for interaction=0.27). The corresponding RRs using GRS29 were 2.19 and 1.88 (p for interaction=0.40). The lack of interaction persisted in NHS (all p values >0.20) and in our analyses limited to those with hypertension in both cohorts. SLC22A11 (OAT4) showed a significant interaction only among women but in the opposite direction to the recent study. CONCLUSIONS: In these large prospective studies, individuals with a genetic predisposition for hyperuricaemia are not at a higher risk of developing diuretic-induced gout than those without.
Assuntos
Diuréticos/efeitos adversos , Predisposição Genética para Doença/genética , Gota/epidemiologia , Gota/genética , Hiperuricemia/epidemiologia , Hiperuricemia/genética , Adulto , Diuréticos/uso terapêutico , Feminino , Seguimentos , Pessoal de Saúde , Humanos , Hipertensão/tratamento farmacológico , Incidência , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Enfermeiras e Enfermeiros , Estudos Prospectivos , Fatores de RiscoRESUMO
BACKGROUND: There is currently great interest in the incorporation of genetic susceptibility loci into screening models to identify individuals at high risk of disease. Here, we present the first risk prediction model including all 46 known genetic loci associated with rheumatoid arthritis (RA). METHODS: A weighted genetic risk score (wGRS) was created using 45 RA non-human leucocyte antigen (HLA) susceptibility loci, imputed amino acids at HLA-DRB1 (11, 71 and 74), HLA-DPB1 (position 9) HLA-B (position 9) and gender. The wGRS was tested in 11â 366 RA cases and 15â 489 healthy controls. The risk of developing RA was estimated using logistic regression by dividing the wGRS into quintiles. The ability of the wGRS to discriminate between cases and controls was assessed by receiver operator characteristic analysis and discrimination improvement tests. RESULTS: Individuals in the highest risk group showed significantly increased odds of developing anti-cyclic citrullinated peptide-positive RA compared to the lowest risk group (OR 27.13, 95% CI 23.70 to 31.05). The wGRS was validated in an independent cohort that showed similar results (area under the curve 0.78, OR 18.00, 95% CI 13.67 to 23.71). Comparison of the full wGRS with a wGRS in which HLA amino acids were replaced by a HLA tag single-nucleotide polymorphism showed a significant loss of sensitivity and specificity. CONCLUSIONS: Our study suggests that in RA, even when using all known genetic susceptibility variants, prediction performance remains modest; while this is insufficiently accurate for general population screening, it may prove of more use in targeted studies. Our study has also highlighted the importance of including HLA variation in risk prediction models.
Assuntos
Artrite Reumatoide/genética , Medição de Risco/métodos , Artrite Reumatoide/imunologia , Feminino , Predisposição Genética para Doença , Antígenos HLA-B/genética , Cadeias beta de HLA-DP/genética , Cadeias HLA-DRB1/genética , Humanos , Modelos Logísticos , Masculino , Peptídeos Cíclicos/imunologia , Polimorfismo de Nucleotídeo Único , Fatores SexuaisRESUMO
OBJECTIVE: To evaluate the contribution of the SPP1 rs11439060 and rs9138 polymorphisms, previously reported as autoimmune risk variants, in the rheumatoid arthritis (RA) genetic background according to anti-citrullinated protein antibodies (ACPAs) status of RA individuals. METHODS: We analysed a total of 11,715 RA cases and 26,493 controls from nine independent cohorts; all individuals were genotyped or had imputed genotypes for SPP1 rs11439060 and rs9138. The effect of the SPP1 rs11439060 and rs9138 risk-allele combination on osteopontin (OPN) expression in macrophages and OPN serum levels was investigated. RESULTS: We provide evidence for a distinct contribution of SPP1 to RA susceptibility according to ACPA status: the combination of ≥3 SPP1 rs11439060 and rs9138 common alleles was associated mainly with ACPA negativity (p=1.29×10(-5), ORACPA-negative 1.257 (1.135 to 1.394)) and less with ACPA positivity (p=0.0148, ORACPA-positive 1.072 (1.014 to 1.134)). The ORs between these subgroups (ie, ACPA-positive and ACPA-negative) significantly differed (p=7.33×10(-3)). Expression quantitative trait locus analysis revealed an association of the SPP1 risk-allele combination with decreased SPP1 expression in peripheral macrophages from 599 individuals. To corroborate these findings, we found an association of the SPP1 risk-allele combination and low serum level of secreted OPN (p=0.0157), as well as serum level of secreted OPN correlated positively with ACPA production (p=0.005; r=0.483). CONCLUSIONS: We demonstrate a significant contribution of the combination of SPP1 rs11439060 and rs9138 frequent alleles to risk of RA, the magnitude of the association being greater in patients negative for ACPAs.
Assuntos
Artrite Reumatoide/genética , Autoanticorpos/imunologia , Citrulina/imunologia , Osteopontina/genética , Peptídeos/imunologia , Alelos , Artrite Reumatoide/imunologia , Estudos de Casos e Controles , Feminino , Predisposição Genética para Doença , Haplótipos , Humanos , Macrófagos/metabolismo , Masculino , Osteopontina/metabolismo , Polimorfismo de Nucleotídeo ÚnicoRESUMO
OBJECTIVE: A highly polygenic aetiology and high degree of allele-sharing between ancestries have been well elucidated in genetic studies of rheumatoid arthritis. Recently, the high-density genotyping array Immunochip for immune disease loci identified 14 new rheumatoid arthritis risk loci among individuals of European ancestry. Here, we aimed to identify new rheumatoid arthritis risk loci using Korean-specific Immunochip data. METHODS: We analysed Korean rheumatoid arthritis case-control samples using the Immunochip and genome-wide association studies (GWAS) array to search for new risk alleles of rheumatoid arthritis with anticitrullinated peptide antibodies. To increase power, we performed a meta-analysis of Korean data with previously published European Immunochip and GWAS data for a total sample size of 9299 Korean and 45,790 European case-control samples. RESULTS: We identified eight new rheumatoid arthritis susceptibility loci (TNFSF4, LBH, EOMES, ETS1-FLI1, COG6, RAD51B, UBASH3A and SYNGR1) that passed a genome-wide significance threshold (p<5×10(-8)), with evidence for three independent risk alleles at 1q25/TNFSF4. The risk alleles from the seven new loci except for the TNFSF4 locus (monomorphic in Koreans), together with risk alleles from previously established RA risk loci, exhibited a high correlation of effect sizes between ancestries. Further, we refined the number of single nucleotide polymorphisms (SNPs) that represent potentially causal variants through a trans-ethnic comparison of densely genotyped SNPs. CONCLUSIONS: This study demonstrates the advantage of dense-mapping and trans-ancestral analysis for identification of potentially causal SNPs. In addition, our findings support the importance of T cells in the pathogenesis and the fact of frequent overlap of risk loci among diverse autoimmune diseases.
Assuntos
Artrite Reumatoide/genética , Povo Asiático/genética , População Branca/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Estudos de Casos e Controles , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , República da Coreia/etnologia , Adulto JovemRESUMO
Genetic case-control association studies often include data on clinical covariates, such as body mass index (BMI), smoking status, or age, that may modify the underlying genetic risk of case or control samples. For example, in type 2 diabetes, odds ratios for established variants estimated from low-BMI cases are larger than those estimated from high-BMI cases. An unanswered question is how to use this information to maximize statistical power in case-control studies that ascertain individuals on the basis of phenotype (case-control ascertainment) or phenotype and clinical covariates (case-control-covariate ascertainment). While current approaches improve power in studies with random ascertainment, they often lose power under case-control ascertainment and fail to capture available power increases under case-control-covariate ascertainment. We show that an informed conditioning approach, based on the liability threshold model with parameters informed by external epidemiological information, fully accounts for disease prevalence and non-random ascertainment of phenotype as well as covariates and provides a substantial increase in power while maintaining a properly controlled false-positive rate. Our method outperforms standard case-control association tests with or without covariates, tests of gene x covariate interaction, and previously proposed tests for dealing with covariates in ascertained data, with especially large improvements in the case of case-control-covariate ascertainment. We investigate empirical case-control studies of type 2 diabetes, prostate cancer, lung cancer, breast cancer, rheumatoid arthritis, age-related macular degeneration, and end-stage kidney disease over a total of 89,726 samples. In these datasets, informed conditioning outperforms logistic regression for 115 of the 157 known associated variants investigated (P-value = 1 × 10(-9)). The improvement varied across diseases with a 16% median increase in χ(2) test statistics and a commensurate increase in power. This suggests that applying our method to existing and future association studies of these diseases may identify novel disease loci.
Assuntos
Estudos de Casos e Controles , Estudos de Associação Genética/estatística & dados numéricos , Predisposição Genética para Doença , Modelos Genéticos , Fatores Etários , Índice de Massa Corporal , Mapeamento Cromossômico , Análise Fatorial , Feminino , Genótipo , Humanos , Modelos Logísticos , Masculino , Polimorfismo de Nucleotídeo Único , FumarRESUMO
BACKGROUND/AIMS: Phenotypic discordance in monozygotic (MZ) twin pairs can have an epigenetic or genetic basis. Although age-related macular degeneration (AMD) has a strong genetic component, few studies have addressed its epigenetic basis. METHODS: Using SNP arrays, we evaluated differences in copy number variation (CNV) and allele-specific methylation (ASM) patterns (via methyl-sensitive restriction enzyme digestion of DNA) in MZ twin pairs from the US Twin Study of AMD. Further analyses examined the relationship between ASM and CNVs with AMD by both case/control analysis of ASM at candidate regions and by analysis of ASM and CNVs in twins discordant for AMD. RESULTS: The frequency of ASM sites differs between cases and controls in regions surrounding the AMD candidate genes CFH, C2 and CFB. While ASM patterns show a substantial dependence on local sequence polymorphisms, we observed dissimilar patterns of ASM between MZ twins. The genes closest to the sites where discordant MZ twins have dissimilar patterns of ASM are enriched for genes implicated in gliosis, a process associated with neovascular AMD. Similar twin-based analyses revealed no AMD-associated CNVs. CONCLUSIONS: Our results provide evidence of epigenetic influences beyond the known genetic susceptibility and implicate inflammatory responses and gliosis in the etiology of AMD.
Assuntos
Epigenômica , Degeneração Macular/genética , Gêmeos Monozigóticos/genética , Alelos , Estudos de Casos e Controles , Variações do Número de Cópias de DNA , Metilação de DNA , Gliose/epidemiologia , Gliose/genética , Humanos , Degeneração Macular/epidemiologia , Masculino , Polimorfismo de Nucleotídeo Único , Estados Unidos/epidemiologiaAssuntos
COVID-19 , Complicações Infecciosas na Gravidez , Feminino , Humanos , Gravidez , Resultado da Gravidez , SARS-CoV-2RESUMO
Population stratification--allele frequency differences between cases and controls due to systematic ancestry differences-can cause spurious associations in disease studies. We describe a method that enables explicit detection and correction of population stratification on a genome-wide scale. Our method uses principal components analysis to explicitly model ancestry differences between cases and controls. The resulting correction is specific to a candidate marker's variation in frequency across ancestral populations, minimizing spurious associations while maximizing power to detect true associations. Our simple, efficient approach can easily be applied to disease studies with hundreds of thousands of markers.
Assuntos
Genômica/estatística & dados numéricos , Algoritmos , Alelos , Estudos de Casos e Controles , Bases de Dados de Ácidos Nucleicos , Marcadores Genéticos , Genoma Humano , Genótipo , Humanos , Fenótipo , Polimorfismo de Nucleotídeo Único , Análise de Componente PrincipalRESUMO
Whole-genome association studies are predicted to be especially powerful in isolated populations owing to increased linkage disequilibrium (LD) and decreased allelic diversity, but this possibility has not been empirically tested. We compared genome-wide data on 113,240 SNPs typed on 30 trios from the Pacific island of Kosrae to the same markers typed in the 270 samples from the International HapMap Project. The extent of LD is longer and haplotype diversity is lower in Kosrae than in the HapMap populations. More than 98% of Kosraen haplotypes are present in HapMap populations, indicating that HapMap will be useful for genetic studies on Kosrae. The long-range LD around common alleles and limited diversity result in improved efficiency in genetic studies in this population and augments the power to detect association of 'hidden SNPs'.