Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
AJNR Am J Neuroradiol ; 41(2): 206-212, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31948951

RESUMO

BACKGROUND AND PURPOSE: Brain CTP is used to estimate infarct and penumbra volumes to determine endovascular treatment eligibility for patients with acute ischemic stroke. We aimed to assess the accuracy of a Bayesian CTP algorithm in determining penumbra and final infarct volumes. MATERIALS AND METHODS: Data were retrospectively collected for 105 patients with acute ischemic stroke (55 patients with successful recanalization [TICI 2b/2c/3] and large-vessel occlusions and 50 patients without interventions). Final infarct volumes were calculated using DWI and FLAIR 24 hours following CTP imaging. RAPID and the Vitrea Bayesian CTP algorithm (with 3 different settings) predicted infarct and penumbra volumes for comparison with final infarct volumes to assess software performance. Vitrea settings used different combinations of perfusion maps (MTT, TTP, CBV, CBF, delay time) for infarct and penumbra quantification. Patients with and without interventions were included for assessment of predicted infarct and penumbra volumes, respectively. RESULTS: RAPID and Vitrea default setting had the most accurate final infarct volume prediction in patients with interventions ([Spearman correlation coefficient, mean infarct difference] default versus FLAIR: [0.77, 4.1 mL], default versus DWI: [0.72, 4.7 mL], RAPID versus FLAIR: [0.75, 7.5 mL], RAPID versus DWI: [0.75, 6.9 mL]). Default Vitrea and RAPID were the most and least accurate in determining final infarct volume for patients without an intervention, respectively (default versus FLAIR: [0.76, -0.4 mL], default versus DWI: [0.71, -2.6 mL], RAPID versus FLAIR: [0.68, -49.3 mL], RAPID versus DWI: [0.65, -51.5 mL]). CONCLUSIONS: Compared with RAPID, the Vitrea default setting was noninferior for patients with interventions and superior in penumbra estimation for patients without interventions as indicated by mean infarct differences and correlations with final infarct volumes.


Assuntos
Algoritmos , Interpretação de Imagem Assistida por Computador/métodos , Neuroimagem/métodos , Imagem de Perfusão/métodos , Acidente Vascular Cerebral/diagnóstico por imagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Teorema de Bayes , Isquemia Encefálica/diagnóstico por imagem , Isquemia Encefálica/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Acidente Vascular Cerebral/patologia , Tomografia Computadorizada por Raios X/métodos
2.
Artigo em Inglês | MEDLINE | ID: mdl-29899592

RESUMO

The imaging of endovascular devices during neurovascular procedures such as the coiling of aneurysms guided with CBCT imaging may be challenging due to the presence of highly attenuating materials such as platinum in the coil and stent marker, nickel-titanium in the stent, iodine in the contrast agent, and tantalum in the embolization agent. The use of dual-energy imaging followed by a basis material decomposition image processing-scheme may improve the feature separation and recognition. Two sets of testing were performed to validate this concept. The first trial was the acquisition of dual-energy micro-CBCT data of a 3D-printed simple aneurysm model using a 49.5 µm pixel size CMOS detector (Teledyne DALSA, Waterloo, ON.). Two sets of projection data were acquired using beam energies of 35 kVp and 70 kVp. Axial slices were reconstructed and used to carry out the material decomposition processing. The second trial was the acquisition of dual-energy CBCT images of a RS-240T angiographic head phantom (Radiology Support Devices Inc., CA.) with an iodine vascular insert using a Toshiba Infinix BiPlane C-arm system coupled to a flat panel detector. Two sets of image data were acquired using beam energies of 80 kVp and 120 kVp. Following image reconstruction, slices of the phantom were decomposed using the same processing as previously. The resulting image data over both trials indicate that the decomposition process was successful in separating the kinds of materials commonly used during a neurovascular intervention, such as platinum, cobalt-chromium, and iodine. The normalized root mean square error metric was used to quantitatively assess this. This indicates a basis for future more clinically relevant testing of our methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA