Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Planta ; 259(3): 67, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38332313

RESUMO

MAIN CONCLUSION: The analysis of meiotic pairing affinities and genomic formulae in species and hybrids of Zea allowed us to speculate an evolutionary model to recreate the ancient polyploidization of maize and allied species. The meiotic pairing affinities and the genomic formulae analysis in Zea species and hybrids obtained in new and previous crosses, together with the molecular data known in the genus, allowed us to speculate an evolutionary model to attempt to recreate the ancient polyploidization process of Zea species. We propose that x = 5 semispecies are the ancestors of all modern species of the genus. The complex evolutionary process that originated the different taxa could be included hybridization between sympatric diploid ancestral semispecies (2n = 10) and recurrent duplication of the hybrid chromosome number, resulting in distinct auto- and allopolyploids. After the merger and doubling of independent genomes would have undergone cytological and genetical diploidization, implying revolutionary changes in genome organization and genic balance processes. Based on the meiotic behaviour of the 2n = 30 hybrids, that showed homoeology between the A subgenomes of all parental species, we propose that this subgenome A would be pivotal in all the species and would have conserved the rDNA sequences and the pairing regulator locus (PrZ). In the hypothetical model postulated here, the ancestral semispecies with the pivotal subgenome A would have had a wide geographic distribution, co-occurring and hybridizing with the semispecies harbouring B subgenomes, thus enabling sympatric speciation.


Assuntos
Poaceae , Zea mays , Zea mays/genética , Poaceae/genética , Poliploidia , Evolução Biológica , Análise Citogenética , Genoma de Planta/genética
2.
J Plant Res ; 131(2): 285-296, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29177755

RESUMO

The Northwestern Argentina (NWA) highland region is one of the southernmost areas of native maize cultivation. We studied variations of different cytological parameters, such as DNA contents, presence/absence of B chromosomes (Bs), and number and sequence composition of heterochromatic knobs in ten accessions of four maize landraces growing along a broad altitudinal cline in NWA. The aim of this work was to assess variations in cytological parameters and their relationship with the crop altitude of cultivation, in an adaptive context. The A-DNA content of the A chromosome complements showed 40% of difference between the lowest (4.5 pg) and the highest (6.3 pg) 2C value. This variation could be attributed to differences in number and size of heterochromatic knobs. Fluorescent in situ hybridization studies revealed the sequence composition of each knob, with a higher proportion of knobs composed of 180-bp repeats rather than TR-1 repeats, in all accessions. We also found numerical polymorphisms and the highest frequency of Bs reported in maize to this date. These results lead us to propose that the frequencies and doses of Bs are influenced by the landrace genotypical make-up. The Bs might be maintained in higher frequencies in those accessions having lower heterochromatin content, so as to preserve an optimal nucleotype. Furthermore, selective forces acting along the altitudinal gradient might be modulating the cytological parameters studied, as suggested by the significant correlations found among them.


Assuntos
Altitude , Cromossomos de Plantas/genética , DNA de Plantas/genética , Variação Genética , Zea mays/genética , Argentina , Meio Ambiente , Genótipo , Heterocromatina/química , Hibridização in Situ Fluorescente
3.
BMC Plant Biol ; 16(1): 186, 2016 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-27561710

RESUMO

BACKGROUND: Maize landraces from South America have traditionally been assigned to two main categories: Andean and Tropical Lowland germplasm. However, the genetic structure and affiliations of the lowland gene pools have been difficult to assess due to limited sampling and the lack of comparative analysis. Here, we examined SSR and Adh2 sequence variation in a diverse sample of maize landraces from lowland middle South America, and performed a comprehensive integrative analysis of population structure and diversity including already published data of archaeological and extant specimens from the Americas. Geographic distribution models were used to explore the relationship between environmental factors and the observed genetic structure. RESULTS: Bayesian and multivariate analyses of population structure showed the existence of two previously overlooked lowland gene pools associated with Guaraní indigenous communities of middle South America. The singularity of this germplasm was also evidenced by the frequency distribution of microsatellite repeat motifs of the Adh2 locus and the distinct spatial pattern inferred from geographic distribution models. CONCLUSION: Our results challenge the prevailing view that lowland middle South America is just a contact zone between Andean and Tropical Lowland germplasm and highlight the occurrence of a unique, locally adapted gene pool. This information is relevant for the conservation and utilization of maize genetic resources, as well as for a better understanding of environment-genotype associations.


Assuntos
Variação Genética , Zea mays/genética , Teorema de Bayes , Genótipo , Repetições de Microssatélites , Filogenia , Proteínas de Plantas/genética , América do Sul , Zea mays/classificação
4.
Genome ; 58(10): 433-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26506040

RESUMO

The present work compares the molecular affinities, revealed by GISH, with the analysis of meiotic pairing in intra- and interspecific hybrids between species of Zea obtained in previous works. The joint analysis of these data provided evidence about the evolutionary relationships among the species from the paleopolyploid genus Zea (maize and teosintes). GISH and meiotic pairing of intraspecific hybrids revealed high genomic affinity between maize (Zea mays subsp. mays) and both Zea mays subsp. parviglumis and Zea mays subsp. mexicana. On the other hand, when Zea mays subsp. huehuetenanguensis DNA was probed on maize chromosomes, a lower affinity was detected, and the pattern of hybridization suggested intergenomical restructuring between the parental genomes of maize. When DNA from Zea luxurians was used as probe, homogeneous hybridization signals were observed through all maize chromosomes. Lower genomic affinity was observed when DNA from Zea diploperennis was probed on maize chromosomes, especially at knob regions. Maize chromosomes hybridized with Zea perennis DNA showed hybridization signals on four chromosome pairs: two chromosome pairs presented hybridization signal in only one chromosomal arm, whereas four chromosome pairs did not show any hybridization. These results are in agreement with previous GISH studies, which have identified the genomic source of the chromosomes involved in the meiotic configurations of Z. perennis × maize hybrids. These findings allow postulating that maize has a parental genome not shared with Z. perennis, and the existence of intergenomic restructuring between the parental genomes of maize. Moreover, the absence of hybridization signals in all maize knobs indicate that these heterochromatic regions were lost during the Z. perennis genome evolution.


Assuntos
Cruzamentos Genéticos , Genoma de Planta , Zea mays/genética , Cromossomos de Plantas , Sondas de DNA , DNA de Plantas/genética , Genômica , Hibridização Genética , Hibridização In Situ , Hibridização in Situ Fluorescente , Hibridização de Ácido Nucleico , Zea mays/citologia
5.
Genetica ; 142(6): 563-73, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25427938

RESUMO

The "yerba mate" tree, Ilex paraguariensis St. Hil., is a crop native to subtropical South America, marketed for the elaboration of the highly popular "mate" beverage. The Uruguayan germplasm occupies the southernmost area of the species distribution range and carries adaptations to environments that considerably differ from the current production area. We characterized the genetic variability of the germplasm from this unexplored area by jointly analyzing individuals from the diversification center (ABP, Argentina, Brazil and Paraguay) with 19 nuclear and 11 plastidic microsatellite markers. For the Uruguayan germplasm, we registered 55 alleles (18 % private), and 80 genotypes (44 % exclusive), whereas 63 alleles (28.6 % private) and 81 genotypes (42 % exclusive) were recorded for individuals from ABP. Only two plastidic haplotypes were detected. Distance-based and multilocus genotype analyses showed that individuals from ABP intermingle and that the Uruguayan germplasm is differentiated in three gene-pools. Significant positive correlations between genetic and geographic distances were detected. Our results concur in that ABP individuals harbor greater genetic variation than those from the tail of the distribution, as to the number of alleles (1.15-fold), He (1.19-fold), Rs (1.39-fold), and the between-group genetic distances (1.16-fold). Also the shape of the genetic landscape interpolation analysis suggests that the genetic variation decays southward towards the Uruguayan territory. We showed that Uruguayan germplasm hosts a combination of nuclear alleles not present in the central region, constituting a valuable breeding resource. Future conservation efforts should concentrate in collecting numerous individuals of "yerba mate" per site to gather the existent variation.


Assuntos
Pool Gênico , Variação Genética , Ilex paraguariensis/genética , Alelos , Núcleo Celular/genética , DNA de Cloroplastos/genética , DNA de Plantas/genética , Genética Populacional , Genótipo , Haplótipos , Repetições de Microssatélites , Análise de Sequência de DNA , Uruguai
6.
Genome ; 56(5): 267-72, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23789994

RESUMO

The aim of this work was to cytogenetically characterize triticale cultivars through fluorescence in situ hybridization (FISH) analysis of their rye chromosomes. In the present work, we studied six cultivars of triticale ('Cayú-UNRC', 'Cumé-UNRC', 'Genú-UNRC', 'Ñinca-UNRC', 'Quiñé-UNRC', and 'Tizné-UNRC'), released by the Universidad Nacional de Río Cuarto (UNRC), Córdoba, Argentina. The cultivars were obtained from the International Center for the Improvement of Maize and Wheat (CIMMYT) and improved for fresh forage, haymaking, and feed grain at UNRC. The distribution and organization of highly repetitive DNA sequences of Secale cereale (pSc74, pSc200, pSc250, and pSc119.2) using FISH analyses revealed a specific localization of the signals for several rye chromosomes, which allowed us to distinguish the cultivars. Cluster analysis showed a great cytogenetic similarity among the rye cultivars used to originate these hybrids. The knowledge of the variability among triticale cultivars is necessary to propose future crosses in breeding programs. This study will also be valuable to identify commercial seeds and to analyze the possible association between agronomic characters and the presence of certain rye chromosomes or specific regions in these chromosomes.


Assuntos
Cromossomos de Plantas/genética , Cariótipo , Secale/genética , Hibridização in Situ Fluorescente , Cariotipagem , Filogenia , Sequências Repetitivas de Ácido Nucleico , Secale/classificação
7.
Genome ; 54(1): 26-32, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21217803

RESUMO

The karyotypes of Zea luxurians and a race of maize from northwestern Argentina are described and compared using 4',6-diamidino-2-phenylindole (DAPI) banding and fluorescent in situ hybridization (FISH) to localize the 180 bp knobs. The meiotic behavior of the F1 artificial hybrids Z. luxurians × maize is also analyzed to determine the genomic relationships between both species. Neocentromere activity at knobs in the meiosis of the hybrids is particularly discussed. The meiotic behavior and the high pollen sterility of the hybrid revealed genetical and (or) chromosomal divergences, leading to postzygotic reproductive isolation among their parents. Here, we propose that maize shows lower genomic affinity to Z. luxurians than to other species of the genus with 2n = 20.


Assuntos
Quimera/genética , Cromossomos de Plantas/genética , Meiose/genética , Zea mays/genética , Argentina , Cruzamentos Genéticos , Hibridização in Situ Fluorescente , Indóis/química , Cariotipagem , Poaceae/genética
8.
Biocell ; 35(1): 19-28, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21667668

RESUMO

Bacterial artificial chromosome-fluorescence in situ hybridization (BAC-FISH) and cycling-primed in situ labeling (C-PRINS) techniques were evaluated for integration of physical and genetic maps of sunflower (Helianthus annuus L.). Single-site SSR markers were selected from three linkage groups of a high-density sunflower genetic map. This selection was based on previously identified QTL associated to S. sclerotiorum. These markers were used to select BACs contaning single copy sequences for BAC-FISH aplication. Blocking of highly dispersed repetitive sunflower sequences reduced unspecific hybridization, and allowed the detection of specific signals for BACs containing SSR markers HA4222 and HA2600, anchored to LG 16 and LG 10, respectively. Single-site FISH signal detection was optimized by adjusting the relative quantity and quality of unlabelled repetitive sequences present in the blocking DNA. The SSR marker ORS1247 anchored to the LG 17 was detected by C-PRINS, which yielded fluorescence signals that were specific and intense. This progress in localizing single-copy sequences using BAC-FISH and indirect C-PRINS strategies in sunflower will facilitate the integration of genetic and physical maps, allowing the identification of chromosomes containing key genes and/or QTL associated to agronomic important traits in sunflower.


Assuntos
Cromossomos Artificiais Bacterianos/genética , Cromossomos de Plantas , Helianthus/genética , Hibridização in Situ Fluorescente/métodos , Análise de Sequência de DNA/métodos , Sequência de Bases , Marcadores Genéticos , Locos de Características Quantitativas
9.
Plants (Basel) ; 10(9)2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34579392

RESUMO

In maize, we studied the causes of genome size variation and their correlates with cultivation altitude that suggests the existence of adaptive clines. To discuss the biological role of the genome size variation, we focused on Bolivian maize landraces growing along a broad altitudinal range. These were analyzed together with previously studied populations from altitudinal clines of Northwestern Argentina (NWA). Bolivian populations exhibited numerical polymorphism for B chromosomes (Bs) (from 1 to 5), with frequencies varying from 16.6 to 81.8 and being positively correlated with cultivation altitude. The 2C values of individuals 0B (A-DNA) ranged between 4.73 and 7.71 pg, with 58.33% of variation. The heterochromatic knobs, detected by DAPI staining, were more numerous and larger in individuals 0B than in those with higher doses of Bs. Bolivian and NWA landraces exhibited the same pattern of A-DNA downsizing and fewer and smaller knobs with increasing cultivation altitude, suggesting a mechanistic link among heterochromatin, genome size and phenology. The negative association between the two types of supernumerary DNA (knob heterochromatin and Bs), mainly responsible for the genome size variation, may be considered as an example of intragenomic conflict. It could be postulated that the optimal nucleotype is the result of such conflict, where genome adjustment may lead to an appropriate length of the vegetative cycle for maize landraces growing across altitudinal clines.

10.
Genetica ; 138(6): 567-78, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20221672

RESUMO

The "yerba mate" tree, Ilex paraguariensis, is a functionally dioecious crop species with economic relevance in several South American countries. We report a genomic screening accomplished through representational difference analysis (RDA) in male and female I. paraguariensis trees. The aim of the present paper was to investigate the occurrence of sex-related genomic differences in order to develop an early gender detection molecular method that could help reducing energy inputs during the "yerba mate" processing and that could be suitable for breeding programs. An intra-experiment redundancy was detected via SSCP analysis and sequence characterization. Taking together both reciprocal RDA assays, fragments isolated can be discriminated into three main categories. The first category of fragments shows spurious affinities with available deposited sequences and could be considered as specific to I. paraguariensis. The second category comprises sequences identified as organellar or ribosomal plant DNA. Sequences grouped in the third category involve clones akin to conserved domains of retrotransposons (RNaseH, integrases and/or chromodomains) from at least two distinct lineages of Ty3/Gypsy retrotransposons and one from Ty1/Copia retroelements, which in addition are associated to sex determination regions of the Solanaceae, Caricaceae and Salicaceae. A contig sequence was assembled that codes for an integrase core domain and a chromodomain. The phylogenetic analysis of the so-called IPRE (for I. paraguariensis retroelement) integrase domain indicates that it belongs to the Del lineage of the Chromoviridae. This is the first report of mobile elements isolated and detected from the "yerba mate" tree. Although RDA derived fragments, so far tested, have been retrieved from both sexes with similar sequences, association to sex related regions cannot be completely discarded. Implications of present results are further discussed.


Assuntos
Genoma de Planta , Ilex paraguariensis/genética , DNA de Plantas/genética , Ligação Genética , Genômica , Ilex paraguariensis/classificação , Filogenia , Retroelementos/genética
11.
Genome ; 53(8): 594-8, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20725146

RESUMO

Subseries Turnera comprises a polyploid complex with ploidy levels ranging from diploid (2n = 2x = 10) to octoploid (2n = 8x = 40). The use of fluorescent in situ hybridization greatly improved the knowledge of the karyotypes of Turnera species by detecting and mapping rDNA sites. Interspecific variability in the number of sites was detected, but not in correlation with the ploidy level. A chromosome pair with a strong hybridization signal was always visible and this signal corresponded to the secondary constriction detectable by conventional techniques. Genomic in situ hybridization experiments combined with information on meiotic pairing in species and interspecific hybrids revealed that homologies detected by molecular analysis are greater than those detected by chromosome pairing. This suggests that the formation of the allopolyploids could involve species more closely related than previously assumed. Despite the molecular affinity among the genomes, the meiotic pairing is probably controlled by specific genes that restrict homeologous pairing in polyploids.


Assuntos
Mapeamento Cromossômico/métodos , DNA Ribossômico/genética , Genoma de Planta , Hibridização in Situ Fluorescente/métodos , Turnera/genética , Quimera/genética , Sondas de DNA/genética , Sondas de DNA/metabolismo , Genômica/métodos , Especificidade da Espécie , Especificidade por Substrato/genética , Turnera/classificação
12.
Genome ; 53(10): 824-31, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20962889

RESUMO

Eryngium L. (Umbelliferae) is a large genus including more than 250 species worldwide. The large morphological variability in this genus makes it difficult to delimit the species or to establish phylogenetic relationships. The occurrence of different ploidy levels within the genus might indicate a hybrid origin of the polyploid species. In the present study, the chromosome number and karyotype of E. regnellii are reportedfor the first time and the ploidy level of a population of E. paniculatum is confirmed. We compare the genomes of the diploids E. horridum and E. eburneum, the tetraploids E. megapotamicum and E. regnellii, and the hexaploids E. pandanifolium (as a representative of the whole pandanifolium complex) and E. paniculatum using genomic in situ hybridization (GISH). Although it was not possible to identify the parental species of the polyploid taxa analyzed, the GISH technique allowed us to postulate some hypotheses about their origin. Eryngium horridum and E. eburneum do not seem to be the direct progenitors of the polyploids analyzed. On the other hand, it seems that other diploid species unrelated to E. horridum and E. eburneum are involved in their origin. Our results are consistent with morphological and phylogenetic studies, indicating a close relationship between the species of the series Latifolia.


Assuntos
Diploide , Eryngium/genética , Hibridização In Situ/métodos , Poliploidia , DNA de Plantas , Genoma de Planta , Metáfase , Hibridização de Ácido Nucleico/métodos , Especificidade da Espécie
13.
Theor Appl Genet ; 119(6): 1053-67, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19639296

RESUMO

The highland region or Northwestern Argentina (NWA) is one of the southernmost areas of native maize cultivation and constitutes an expansion of the peruvian Andes sphere of influence. To examine the genetic diversity and racial affiliations of the landraces cultivated in this area, 18 microsatellite markers were used to characterize 147 individuals from 6 maize races representative of traditional materials. For the whole data set, a total of 184 alleles were found, with an average of 10.2 alleles per locus. The average gene diversity was 0.571. The observed patterns of genetic differentiation suggest that historical association is probably the main factor in shaping population structure for the landraces studied here. In agreement with morphological and cytogenetic data, Bayesian analysis of NWA landraces revealed the occurrence of three main gene pools. Assessment of racial affiliations using a combined dataset including previous data on American landraces showed a clear relationship between one of these gene pools and typical Andean races, whereas the remaining two gene pools exhibited a closer association to Caribbean accessions and native germplasm from the United States, respectively. These results highlight the importance of integrating regional genetic studies if a deeper understanding of maize diversification and dispersal is to be achieved.


Assuntos
Produtos Agrícolas/genética , DNA de Plantas/genética , Variação Genética , Repetições de Microssatélites , Zea mays/genética , Alelos , Argentina , Teorema de Bayes , Cromossomos de Plantas , DNA/genética , DNA/isolamento & purificação , Evolução Molecular , Frequência do Gene , Pool Gênico , Marcadores Genéticos , Genótipo , Geografia , Modelos Estatísticos , Zea mays/classificação
14.
Genet Mol Biol ; 32(2): 312-9, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21637686

RESUMO

Bromus setifolius var. pictus (Hook) Skottsb., B. setifolius var. setifolius Presl. and B.setifolius var. brevifolius Ness are three native Patagonian taxa in the section Pnigma Dumort of the genus Bromus L. AFLP and RAPD analysis, in conjunction with genetic distance measurements and statistical techniques, revealed variation within this group and indicated that B. setifolius var. brevifolius was closely related to B. setifolius var. pictus, with both taxa being more distantly related to B. setifolius var. setifolius. Cytogenetic analysis confirmed the chromosomal number of B. setifolius var. pictus (2n = 70) and B. setifolius var. setifolius (2n = 28) and showed for the first time that B. setifolius var. brevifolius had 2n = 70. The combination of molecular genetic and cytogenetic evidence supported a species status for two of the three taxa and suggested hypotheses for the evolutionary origin of these complex taxa. Species status was also indicated for B. setifolius var. setifolius. Based on these findings, we suggest that B. setifolius var. pictus be referred to as B. pictus Hook var. pictus, and B. setifolius var brevifolius as B. pictus Hook var brevifolius. The correlation between AFLP diversity and variation in ecological parameters suggested that this marker system could be used to assess breeding progress and to monitor the domestication of Patagonian Bromus species for agronomic use.

15.
Genetics ; 177(2): 895-904, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17954923

RESUMO

Cytogenetic analysis of maize landraces from northwestern Argentina has revealed an altitudinal cline in the mean number of B chromosomes (B's) per plant, with cultivars growing at higher altitudes exhibiting a higher number of B's. Altitudinal and longitudinal clines are frequently interpreted as evidence of selection, however, they can also be produced by the interplay between drift and spatially restricted gene flow or by admixture between previously isolated populations that have come into secondary contact. Here, we test the adaptive significance of the observed altitudinal gradient by comparing the levels of differentiation in the mean number of B's to those obtained from 18 selectively neutral loci [simple sequence repeats (SSRs)] among seven populations of the cline. The adequacy of alternative genetic-differentiation measures was determined, and associations between cytogenetic, genetic, and altitudinal distances were assessed by means of matrix- correspondence tests. No evidence for association between pairwise F(ST) and altitudinal distance or B-chromosome differentiation was found. The contrasting pattern of altitudinal divergence between the mean number of B's per plant and the genetic differentiation at SSR loci indicates that demographic processes cannot account for the observed levels of divergence in the mean number of B's.


Assuntos
Cromossomos de Plantas , Polimorfismo Genético , Zea mays/genética , Adaptação Fisiológica , Argentina , Biometria
16.
PLoS One ; 13(1): e0189644, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29293518

RESUMO

Cytological diploidization process is different in autopolyploid and allopolyploid species. Colchicine applied at the onset of meiosis suppresses the effect of pairing regulator genes resulting multivalents formation in bivalent-forming species. Colchicine treated maizes (4x = 2n = 20, AmAmBmBm) showed up to 5IV, suggesting pairing between chromosomes from genomes homoeologous Am and Bm. In untreated individuals of the alloautooctoploid Zea perennis (8x = 2n = 40, ApApAp´Ap´Bp1Bp1Bp2Bp2) the most frequent configuration was 5IV+10II (formed by A and B genomes, respectively). The colchicine treated Z. perennis show up to 10IV revealing higher affinity within genomes A and B, but any homology among them. These results suggest the presence of a paring regulator locus (PrZ) in maize and Z. perennis, whose expression is suppressed by colchicine. It could be postulated that in Z. perennis, PrZ would affect independently the genomes A and B, being relevant the threshold of homology, the fidelity of pairing in each genomes and the ploidy level. Cytological analysis of the treated hexaploid hybrids (6x = 2n = 30), with Z. perennis as a parental, strongly suggests that PrZ is less effective in only one doses. This conclusion was reinforced by the homoeologous pairing observed in untreated dihaploid maizes, which showed up to 5II. Meiotic behaviour of individuals treated with different doses of colchicine allowed to postulate that PrZ affect the homoeologous association by controlling entire genomes (Am or Bm) rather than individual chromosomes. Based on cytological and statistical results it is possible to propose that the cytological diploidization in Zea species occurs by restriction of pairing between homoeologous chromosomes or by genetical divergence of the homoeologous chromosomes, as was observed in untreated Z. mays ssp. parviglumis. These are independent but complementary systems and could be acting jointly in the same nucleus.


Assuntos
Cromossomos de Plantas , Diploide , Genes Reguladores , Zea mays/genética , Colchicina/administração & dosagem , Meiose
17.
PLoS One ; 13(6): e0198398, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29879173

RESUMO

In Argentina there are two different centers of maize diversity, the Northeastern (NEA) and the Northwestern (NWA) regions of the country. In NEA, morphological studies identified 15 landraces cultivated by the Guaraní communities in Misiones Province. In the present study we analyzed the karyotype diversity of 20 populations of Guaraní maize landraces through classical and molecular cytogenetic analyses. Our results demonstrate significant intra and inter-populational variation in the percentage, number, size, chromosome position and frequencies of the heterochromatic blocks, which are called knobs. Knob sequence analysis (180-bp and TR-1) did not show significant differences among Guaraní populations. B chromosomes were not detected, and abnormal 10 (AB10) chromosomes were found with low frequency (0.1≥f ≤0.40) in six populations. Our results allowed karyotypic characterization of each analyzed population, defining for the first time the chromosomal constitution of maize germplasm from NEA. The multivariate analysis (PCoA and UPGMA) of karyotype parameters allowed the distinction between two populations groups: the Popcorn and the Floury maize populations. These results are in agreement with previously published microsatellite and morphological/phenological studies. Finally, we compared our karyotype results with those previously reported for NWA and Central Region of South America maize. Our data suggest that there are important differences between maize from NEA and NWA at the karyotype level, supporting the hypothesis that there are two pathways of input of South America maize. Our results also confirm the existence of two centers of diversification of Argentinian native maize, NWA and NEA. This work contributes new knowledge about maize diversity, which is relevant for future plans to improve commercial maize, and for conservation of agrobiodiversity.


Assuntos
Cromossomos de Plantas/genética , Variação Genética , Cariotipagem/métodos , Zea mays/genética , Argentina , Evolução Molecular , Hibridização in Situ Fluorescente , Filogenia , América do Sul , Zea mays/classificação
18.
Proc Biol Sci ; 274(1609): 545-54, 2007 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-17476775

RESUMO

Archaeological maize specimens from Andean sites of southern South America, dating from 400 to 1400 years before present, were tested for the presence of ancient DNA and three microsatellite loci were typed in the specimens that gave positive results. Genotypes were also obtained for 146 individuals corresponding to modern landraces currently cultivated in the same areas and for 21 plants from Argentinian lowland races. Sequence analysis of cloned ancient DNA products revealed a high incidence of substitutions appearing in only one clone, with transitions prevalent. In the archaeological specimens, there was no evidence of polymorphism at any one of the three microsatellite loci: each exhibited a single allelic variant, identical to the most frequent allele found in contemporary populations belonging to races Amarillo Chico, Amarillo Grande, Blanco and Altiplano. Affiliation between ancient specimens and a set of races from the Andean complex was further supported by assignment tests. The striking genetic uniformity displayed by the ancient specimens and their close relationship with the Andean complex suggest that the latter gene pool has predominated in the western regions of southern South America for at least the past 1400 years. The results support hypotheses suggesting that maize cultivation initially spread into South America via a highland route, rather than through the lowlands.


Assuntos
Produtos Agrícolas/genética , Repetições de Microssatélites , Zea mays/genética , Produtos Agrícolas/classificação , Genótipo , Geografia , Filogenia , Polimorfismo Genético , Análise de Sequência de DNA , América do Sul , Zea mays/classificação
19.
Life (Basel) ; 7(4)2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29165335

RESUMO

The use of molecular markers with inadequate variation levels has resulted in poorly resolved phylogenetic relationships within Ilex. Focusing on southern South American and Asian species, we aimed at contributing informative plastid markers. Also, we intended to gain insights into the nature of morphological and physiological characters used to identify species. We obtained the chloroplast genomes of I.paraguariensis and I. dumosa, and combined these with all the congeneric plastomes currently available to accomplish interspecific comparisons and multilocus analyses. We selected seven introns and nine IGSs as variable non-coding markers that were used in phylogenomic analyses. Eight extra IGSs were proposed as candidate markers. Southern South American species formed one lineage, except for I. paraguariensis, I. dumosa and I. argentina, which occupied intermediate positions among sampled taxa; Euroasiatic species formed two lineages. Some concordant relationships were retrieved from nuclear sequence data. We also conducted integral analyses, involving a supernetwork of molecular data, and a simultaneous analysis of quantitative and qualitative morphological and phytochemical characters, together with molecular data. The total evidence tree was used to study the evolution of non-molecular data, evidencing fifteen non-ambiguous synapomorphic character states and consolidating the relationships among southern South American species. More South American representatives should be incorporated to elucidate their origin.

20.
AoB Plants ; 82016.
Artigo em Inglês | MEDLINE | ID: mdl-27255515

RESUMO

Genes involved in the exclusive pairing of homologous chromosomes have been described in several polyploid species but little is known about the activity of these genes in diploids (which have only one dose of each homoeologous genome). Analysis of the meiotic behaviour of species, natural and artificial hybrids and polyploids of Glandularia suggests that, in allopolyploids where homoeologous genomes are in two doses, regulator genes prevent homoeologous pairing. The different meiotic phenotypes in diploid F1 hybrids between Glandularia pulchella and Glandularia incisa strongly suggest that these pairing regulator genes possess an incomplete penetrance when homoeologous genomes are in only one dose. Moreover, the meiotic analysis of natural and artificial F1 hybrids suggests that the genetic constitution of parental species influences the activity of pairing regulator genes and is mainly responsible for variability in the amount of homoeologous pairing observed in diploid hybrids. In Glandularia, the pairing regulator genes originated in South American diploid species. The cytogenetic characteristics of this genus make it a good model to analyse and explore in greater depth the activity of pairing regulator genes at different ploidy levels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA