Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Arch Biochem Biophys ; 758: 110080, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38960345

RESUMO

Glycyrrhizinic acid (GA) is one of the active substances in licorice root. It exhibits antiviral activity against various enveloped viruses, for example, SARS-CoV-2. GA derivatives are promising biologically active compounds from perspective of developing broad-spectrum antiviral agents. Given that GA nicotinate derivatives (Glycyvir) demonstrate activity against various DNA- and RNA-viruses, a search for a possible mechanism of action of these compounds is required. In the present paper, the interaction of Glycyvir with the transmembrane domain of the SARS-CoV-2 E-protein (ETM) in a model lipid membrane was investigated by NMR spectroscopy and molecular dynamics simulation. The lipid-mediated influence on localization of the SARS-CoV-2 E-protein by Glycyvir was observed. The presence of Glycyvir leads to deeper immersion of the ETM in lipid bilayer. Taking into account that E-protein plays a significant role in virus production and takes part in virion assembly and budding, the data on the effect of potential antiviral agents on ETM localization and structure in the lipid environment may provide a basis for further studies of potential coronavirus E-protein inhibitors.


Assuntos
Antivirais , Ácido Glicirrízico , Bicamadas Lipídicas , Simulação de Dinâmica Molecular , SARS-CoV-2 , Bicamadas Lipídicas/metabolismo , Bicamadas Lipídicas/química , Ácido Glicirrízico/farmacologia , Ácido Glicirrízico/química , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/metabolismo , Antivirais/farmacologia , Antivirais/química , Proteínas do Envelope de Coronavírus/metabolismo , Proteínas do Envelope de Coronavírus/química , Humanos , Domínios Proteicos , Tratamento Farmacológico da COVID-19
2.
Biometals ; 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39306617

RESUMO

Anthraquinones (AQs) are very effective chemotherapeutic agent, however their fundamental shortcoming is high cardiotoxicity caused by reactive oxygen species (ROS). Therefore, development of improved antitumor drugs with enhanced efficacy but reduced side effects remains a high priority. In the present study we evaluated the cytotoxicity and ROS generation activity of chelate complex of redox-active anthraquinone 2-phenyl-4-(butylamino)naphtho[2,3-h]quinoline-7,12-dione (Q1) with iron and copper ions. Cytotoxicity study was performed using the lung cancer cell line A549 and breast cancer cell line MDA-MB-231. Q1 and Cu-Q1 complex demonstrate high activity in these experiments, but Fe-Q1 complex inactive. The ROS generation activity has been studied by EPR spin trapping technique using A549, MDA-MB-231 cell lines, and T lymphoblast cell line MOLT-4. It was shown that Q1 is able to penetrate into these cells and participate in redox reactions with the formation of a semiquinone radical. Fe(III) chelate complex formation results in much slower kinetics of ROS generation compared with pure Q1, which could be connected with a lower penetration through the cell membrane.

3.
J Chem Phys ; 161(3)2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39007395

RESUMO

Electron transfer plays a crucial role in living systems, including the generation of reactive oxygen species (ROS). Oxygen acts as the terminal electron acceptor in the respiratory chains of aerobic organisms as well as in some photoinduced processes followed by the formation of ROS. This is why the participation of exogenous antioxidants in electron transfer processes in living systems is of particular interest. In the present study, using chemically induced dynamic nuclear polarization (CIDNP) and dissociative electron attachment (DEA) techniques, we have elucidated the affinity of solvated and free electrons to glycyrrhetinic acid (GA)-the aglicon of glycyrrhizin (the main active component of Licorice root). CIDNP is a powerful instrument to study the mechanisms of electron transfer reactions in solution, but the DEA technique shows its effectiveness in gas phase processes. For CIDNP experiments, the photoionization of the dianion of 5-sulfosalicylic acid (HSSA2-) was used as a model reaction of solvated electron generation. DEA experiments testify that GA molecules are even better electron acceptors than molecular oxygen, at least under gas-phase conditions. In addition, the effect of the solvent on the energetics of the reactants is discussed.


Assuntos
Elétrons , Ácido Glicirretínico , Ácido Glicirretínico/química , Solventes/química , Transporte de Elétrons , Salicilatos/química
4.
Int J Mol Sci ; 25(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38542168

RESUMO

Crocin is a unique water-soluble carotenoid found in crocus and gardenia flowers. Crocin has been shown to have a variety of pharmacological activities, such as antioxidant, anti-cancer, memory improvement, antidepressant, anti-ischemia, blood pressure lowering and aphrodisiac, gene protection and detoxification activities. Due to their amphiphilicity, crocin molecules form concentration-dependent self-associates (micelles) in a water solution. In the present study, using various NMR techniques (T2 relaxation and selective gradient NOESY), we have demonstrated that crocin forms mixed micelles with water-soluble drug delivery system glycyrrhizin and linoleic acid molecules. Note, that the spin-spin T2 relaxation time and NOESY spectroscopy are very sensitive to intermolecular interactions and molecular diffusion mobility. The second purpose of this work was the elucidation of the interaction of crocin with a model lipid membrane using NMR techniques and a molecular dynamics simulation and its effects on lipid oxidation. It was shown that the crocin molecule is located near the surface of the lipid bilayer and effectively protects lipids from oxidation by peroxyl radicals. The role of glycyrrhizin and vitamin C in metal-induced lipid oxidation was also elucidated. The results of this study may be useful for expanding the field of application of crocin in medicine and in the food industry.


Assuntos
Antioxidantes , Crocus , Antioxidantes/farmacologia , Antioxidantes/química , Micelas , Água , Ácido Glicirrízico/farmacologia , Carotenoides/farmacologia , Carotenoides/química , Lipídeos , Crocus/química
5.
J Chem Phys ; 159(21)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38051100

RESUMO

Electron-driven processes in isolated curcumin (CUR) molecules are studied by means of dissociative electron attachment (DEA) spectroscopy under gas-phase conditions. Elementary photostimulated reactions initiated in CUR molecules under UV irradiation are studied using the chemically induced dynamic nuclear polarization method in an acetonitrile solvent. Density functional theory is applied to elucidate the energetics of fragmentation of CUR by low-energy (0-15 eV) resonance electron attachment and to characterize various CUR radical forms. The adiabatic electron affinity of CUR molecule is experimentally estimated to be about 1 eV. An extra electron attachment to the π1* LUMO and π2* molecular orbitals is responsible for the most intense DEA signals observed at thermal electron energy. The most abundant long-lived (hundreds of micro- to milliseconds) molecular negative ions CUR- are detected not only at the thermal energy of incident electrons but also at 0.6 eV, which is due to the formation of the π3* and π4* temporary negative ion states predicted to lie around 1 eV. Proton-assisted electron transfer between CUR molecules is registered under UV irradiation. The formation of both radical-anions and radical-cations of CUR is found to be more favorable in its enol form. The present findings shed some light on the elementary processes triggered in CUR by electrons and photons and, therefore, can be useful to understand the molecular mechanisms responsible for a variety of biological effects produced by CUR.

6.
Int J Mol Sci ; 24(12)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37373031

RESUMO

Carotenoids are a large and diverse group of compounds that have been shown to have a wide range of potential health benefits. While some carotenoids have been extensively studied, many others have not received as much attention. Studying the physicochemical properties of carotenoids using electron paramagnetic resonance (EPR) and density functional theory (DFT) helped us understand their chemical structure and how they interact with other molecules in different environments. Ultimately, this can provide insights into their potential biological activity and how they might be used to promote health. In particular, some rare carotenoids, such as sioxanthin, siphonaxanthin and crocin, that are described here contain more functional groups than the conventional carotenoids, or have similar groups but with some situated outside of the rings, such as sapronaxanthin, myxol, deinoxanthin and sarcinaxanthin. By careful design or self-assembly, these rare carotenoids can form multiple H-bonds and coordination bonds in host molecules. The stability, oxidation potentials and antioxidant activity of the carotenoids can be improved in host molecules, and the photo-oxidation efficiency of the carotenoids can also be controlled. The photostability of the carotenoids can be increased if the carotenoids are embedded in a nonpolar environment when no bonds are formed. In addition, the application of nanosized supramolecular systems for carotenoid delivery can improve the stability and biological activity of rare carotenoids.


Assuntos
Carotenoides , Promoção da Saúde , Carotenoides/metabolismo , Antioxidantes/farmacologia , Oxirredução , Espectroscopia de Ressonância de Spin Eletrônica
7.
Int J Mol Sci ; 24(8)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37108814

RESUMO

Natural bioactive compounds have recently emerged as a current strategy for Alzheimer's disease treatment. Carotenoids, including astaxanthin, lycopene, lutein, fucoxanthin, crocin and others are natural pigments and antioxidants, and can be used to treat a variety of diseases, including Alzheimer's disease. However, carotenoids, as oil-soluble substances with additional unsaturated groups, suffer from low solubility, poor stability and poor bioavailability. Therefore, the preparation of various nano-drug delivery systems from carotenoids is a current measure to achieve efficient application of carotenoids. Different carotenoid delivery systems can improve the solubility, stability, permeability and bioavailability of carotenoids to a certain extent to achieve Alzheimer's disease efficacy. This review summarizes recent data on different carotenoid nano-drug delivery systems for the treatment of Alzheimer's disease, including polymer, lipid, inorganic and hybrid nano-drug delivery systems. These drug delivery systems have been shown to have a beneficial therapeutic effect on Alzheimer's disease to a certain extent.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/tratamento farmacológico , Sistemas de Liberação de Fármacos por Nanopartículas , Carotenoides/uso terapêutico , Licopeno , Luteína
8.
Int J Mol Sci ; 24(11)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37298248

RESUMO

It is well-known that non-covalent interactions play an essential role in the functioning of biomolecules in living organisms. The significant attention of researchers is focused on the mechanisms of associates formation and the role of the chiral configuration of proteins, peptides, and amino acids in the association. We have recently demonstrated the unique sensitivity of chemically induced dynamic nuclear polarization (CIDNP) formed in photoinduced electron transfer (PET) in chiral donor-acceptor dyads to non-covalent interactions of its diastereomers in solutions. The present study further develops the approach for quantitatively analyzing the factors that determine the association by examples of dimerization of the diastereomers with the RS, SR, and SS optical configurations. It has been shown that, under the UV irradiation of dyads, CIDNP is formed in associates, namely, homodimers (SS-SS), (SR-SR), and heterodimers (SS-SR) of diastereomers. In particular, the efficiency of PET in homo-, heterodimers, and monomers of dyads completely determines the forms of dependences of the CIDNP enhancement coefficient ratio of SS and RS, SR configurations on the ratio of diastereomer concentrations. We expect that the use of such a correlation can be useful in identifying small-sized associates in peptides, which is still a problem.


Assuntos
Aminoácidos , Elétrons , Aminoácidos/química , Transporte de Elétrons , Proteínas , Peptídeos
9.
Int J Mol Sci ; 24(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36834744

RESUMO

Optical isomers of short peptide Lysine-Tryptophan-Lysine (Lys-{L/D-Trp}-Lys) and Lys-Trp-Lys with an acetate counter-ion were used to study photoinduced intramolecular and intermolecular processes of interest in photobiology. A comparison of L- and D-amino acid reactivity is also the focus of scientists' attention in various specialties because today, the presence of amyloid proteins with D-amino acids in the human brain is considered one of the leading causes of Alzheimer's disease. Since aggregated amyloids, mainly Aß42, are highly disordered peptides that cannot be studied with traditional NMR and X-ray techniques, it is trending to explore the reasons for differences between L- and D-amino acids using short peptides, as in our article. Using NMR, chemically induced dynamic nuclear polarization (CIDNP) and fluorescence techniques allowed us to detect the influence of tryptophan (Trp) optical configuration on the peptides fluorescence quantum yields, bimolecular quenching rates of Trp excited state, and the photocleavage products formation. Thus, compared with the D-analog, the L-isomer shows a greater Trp excited state quenching efficiency with the electron transfer (ET) mechanism. There are experimental confirmations of the hypothesis about photoinduced ET between Trp and the CONH peptide bond, as well as between Trp and another amide group.


Assuntos
Lisina , Triptofano , Humanos , Triptofano/química , Aminoácidos/química , Peptídeos/química , Transporte de Elétrons
10.
Molecules ; 28(10)2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37241949

RESUMO

Omadine or N-hydroxypyridine-2-thione and its metal complexes are widely used in medicine and show bactericidal, fungicidal, anticancer, and photochemical activity. The redox activity of omadine complexes with iron, copper, and zinc on lipid peroxidation under light and dark conditions has been investigated. The monitoring of the oxidation of linoleic acid micelles, resembling a model of lipid membrane, was carried out using nuclear magnetic resonance (1H-NMR). It has been shown that the omadine-zinc complex can induce the oxidation of linoleic acid under light irradiation, whereas the complexes with iron and copper are photochemically stable. All the chelating complexes of omadine appear to be redox-inactive in the presence of hydrogen peroxide under dark conditions. These findings suggest that omadine can demonstrate antioxidant behavior in processes involving reactive oxygen species generation induced by transition metals (Fenton and photo-Fenton reactions). However, the omadine complex with zinc, which is widely used in shampoos and ointments, is photochemically active and may cause oxidative cell membrane damage when exposed to light, with possible implications to health.


Assuntos
Antioxidantes , Complexos de Coordenação , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Complexos de Coordenação/farmacologia , Cobre , Ácido Linoleico , Ferro , Oxirredução , Zinco
11.
Int J Mol Sci ; 23(6)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35328481

RESUMO

In this review, we provide an illustration of the idea discussed in the literature of using model compounds to study the effect of substitution of L- for D-amino acid residues in amyloid peptides. The need for modeling is due to the inability to study highly disordered peptides by traditional methods (high-field NMR, X-ray). At the same time, the appearance of such peptides, where L-amino acids are partially replaced by D-analogs is one of the main causes of Alzheimer's disease. The review presents examples of the use diastereomers with L-/D-tryptophan in model process-photoinduced electron transfer (ET) for studying differences in reactivity and structure of systems with L- and D-optical isomers. The combined application of spin effects, including those calculated using the original theory, fluorescence techniques and molecular modeling has demonstrated a real difference in the structure and efficiency of ET in diastereomers with L-/D-tryptophan residues. In addition, the review compared the factors governing chiral inversion in model metallopeptides and Aß42 amyloid.


Assuntos
Aminoácidos , Triptofano , Aminas , Aminoácidos/química , Amiloide/química , Peptídeos beta-Amiloides , Proteínas Amiloidogênicas , Peptídeos , Estereoisomerismo , Triptofano/química
12.
Int J Mol Sci ; 23(3)2022 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-35163169

RESUMO

The antioxidant/pro-oxidant activity of drugs and dietary molecules and their role in the maintenance of redox homeostasis, as well as the implications in health and different diseases, have not yet been fully evaluated. In particular, the redox activity and other interactions of drugs with essential redox metal ions, such as iron and copper, need further investigation. These metal ions are ubiquitous in human nutrition but also widely found in dietary supplements and appear to exert major effects on redox homeostasis in health, but also on many diseases of free radical pathology. In this context, the redox mechanistic insights of mainly three prototype groups of drugs, namely alpha-ketohydroxypyridines (alpha-hydroxypyridones), e.g., deferiprone, anthraquinones, e.g., doxorubicin and thiosemicarbazones, e.g., triapine and their metal complexes were examined; details of the mechanisms of their redox activity were reviewed, with emphasis on the biological implications and potential clinical applications, including anticancer activity. Furthermore, the redox properties of these three classes of chelators were compared to those of the iron chelating drugs and also to vitamin C, with an emphasis on their potential clinical interactions and future clinical application prospects in cancer, neurodegenerative and other diseases.


Assuntos
Antioxidantes/farmacologia , Quelantes/química , Elementos de Transição/química , Antraquinonas/química , Antraquinonas/farmacologia , Antioxidantes/química , Quelantes/farmacologia , Complexos de Coordenação/química , Cobre/química , Doxorrubicina/química , Doxorrubicina/farmacologia , Radicais Livres/química , Ferro/química , Quelantes de Ferro/química , Quelantes de Ferro/farmacologia , Oxirredução/efeitos dos fármacos , Piridinas/química , Piridinas/farmacologia , Espécies Reativas de Oxigênio/química , Tiossemicarbazonas/química , Tiossemicarbazonas/farmacologia
13.
Pharm Res ; 38(4): 693-706, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33754258

RESUMO

PURPOSE: This study aims to overcome the challenges of the current oral targeted drug delivery system, such as the complex preparation process, poor biocompatibility, and delayed drug release. METHODS: Here, a non-covalent polymer hydrogel was prepared using the mechanochemical method, and the solid phase loading of 5-amino salicylic acid (5-ASA) was realized. RESULTS: The results obtained from the thermodynamics study, particle size analysis, and electron microscopy show that chitosan (CS) and sodium alginate (SA) form a pH-sensitive hydrogel under the mechanochemical force and also maintain good stability in aqueous solution. Fluorescent tracers study showed that the pH-sensitive hydrogel could achieve the targeted drug release in the colon and the retention time was over 12 h. Next, in vivo efficacy studies, change in mice body weight, DAI (disease activity index) score, thymus, and spleen index, and the diseased state of the mice colon revealed that the pH-sensitive hydrogel is an improved drug delivery system over 5-ASA API commercial preparations as observed in the efficacy and toxicological studies. CONCLUSION: This method uses an innovative preparation technology that without the need of cross-linking agent to produce an efficient colon-targeted drug delivery system for the treatment of ulcerative colitis.


Assuntos
Colite Ulcerativa/tratamento farmacológico , Portadores de Fármacos/química , Composição de Medicamentos/métodos , Hidrogéis/química , Mesalamina/administração & dosagem , Administração Oral , Alginatos , Animais , Disponibilidade Biológica , Química Farmacêutica/métodos , Quitosana/química , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/imunologia , Colite Ulcerativa/patologia , Colo/efeitos dos fármacos , Colo/imunologia , Colo/patologia , Sulfato de Dextrana/administração & dosagem , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Liberação Controlada de Fármacos , Humanos , Concentração de Íons de Hidrogênio , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/imunologia , Mucosa Intestinal/patologia , Masculino , Mesalamina/farmacocinética , Camundongos , Tamanho da Partícula , Ratos
14.
Appl Magn Reson ; 52(8): 1093-1112, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33776215

RESUMO

Carotenoids are indispensable molecules for life. They are present everywhere in plants, algae, bacteria whom they protect against free radicals and oxidative stress. Through the consumption of fruits and vegetables and some carotenoid-containing fish, they are introduced into the human body and, similarly, protect it. There are numerous health benefits associated with the consumption of carotenoids. Carotenoids are antioxidants but at the same time they are prone to oxidation themselves. Electron loss from the carotenoid forms a radical cation. Furthermore, proton loss from a radical cation forms a neutral radical. In this mini-review, we discuss carotenoid radicals studied in our groups by various physicochemical methods, namely the radical cations formed by electron transfer and neutral radicals formed by proton loss from the radical cations. They contain many similar hyperfine couplings due to interactions between the electron spin and numerous protons in the carotenoid. Different EPR and ENDOR methods in combination with DFT calculations have been used to distinguish the two independent carotenoid radical species. DFT predicted larger coupling constants for the neutral radical compared to the radical cation. Previously, INDO calculations miss assigned the large couplings to the radical cation. EPR and ENDOR have aided in elucidating the physisorb, electron and proton transfer processes that occur when carotenoids are adsorbed on solid artificial matrices, and predicted similar reactions in aqueous solution or in plants. After years of study of the physicochemical properties of carotenoid radicals, the different published results start to merge together for a better understanding of carotenoid radical species and their implication in biological systems. Up until 2008, the radical chemistry in artificial systems was elucidated but the correlation between quenching ability and neutral radical formation was an inspiration to look for these radical species in vivo. In addition, the EPR spin-trapping technique has been applied to study inclusion complexes of carotenoids with different delivery systems.

15.
Int J Mol Sci ; 22(12)2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34201293

RESUMO

The study of the L- and D-amino acid properties in proteins and peptides has attracted considerable attention in recent years, as the replacement of even one L-amino acid by its D-analogue due to aging of the body is resulted in a number of pathological conditions, including Alzheimer's and Parkinson's diseases. A recent trend is using short model systems to study the peculiarities of proteins with D-amino acids. In this report, the comparison of the excited states quenching of L- and D-tryptophan (Trp) in a model donor-acceptor dyad with (R)- and (S)-ketoprofen (KP-Trp) was carried out by photochemically induced dynamic nuclear polarization (CIDNP) and fluorescence spectroscopy. Quenching of the Trp excited states, which occurs via two mechanisms: prevailing resonance energy transfer (RET) and electron transfer (ET), indeed demonstrates some peculiarities for all three studied configurations of the dyad: (R,S)-, (S,R)-, and (S,S)-. Thus, the ET efficiency is identical for (S,R)- and (R,S)-enantiomers, while RET differs by 1.6 times. For (S,S)-, the CIDNP coefficient is almost an order of magnitude greater than for (R,S)- and (S,R)-. To understand the source of this difference, hyperpolarization of (S,S)-and (R,S)- has been calculated using theory involving the electron dipole-dipole interaction in the secular equation.


Assuntos
Transferência de Energia , Cetoprofeno/química , Fotoquímica , Triptofano/química , Estrutura Molecular , Estereoisomerismo
16.
Int J Mol Sci ; 23(1)2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35008460

RESUMO

The peculiarities of spin effects in photoinduced electron transfer (ET) in diastereomers of donor-acceptor dyads are considered in order to study the influence of chirality on reactivity. Thus, the spin selectivity-the difference between the enhancement coefficients of chemically induced dynamic nuclear polarization (CIDNP)-of the dyad's diastereomers reflects the difference in the spin density distribution in its paramagnetic precursors that appears upon UV irradiation. In addition, the CIDNP coefficient itself has demonstrated a high sensitivity to the change of chiral centers: when one center is changed, the hyperpolarization of all polarized nuclei of the molecule is affected. The article analyzes the experimental values of spin selectivity based on CIDNP calculations and molecular dynamic modeling data in order to reveal the effect of optical configuration on the structure and reactivity of diastereomers. In this way, we succeeded in tracing the differences in dyads with L- and D-tryptophan as an electron donor. Since the replacement of L-amino acid with D-analog in specific proteins is believed to be the cause of Alzheimer's and Parkinson's diseases, spin effects and molecular dynamic simulation in model dyads can be a useful tool for investigating the nature of this phenomenon.


Assuntos
Proteínas/química , Triptofano/química , Transporte de Elétrons , Elétrons , Espectroscopia de Ressonância Magnética/métodos , Simulação de Dinâmica Molecular , Estereoisomerismo
17.
Molecules ; 26(5)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652843

RESUMO

Glycyrrhizic acid, or glycyrrhizin (GA), a major active component of licorice root, has been widely used in traditional Chinese and Japanese medicine since ancient times. However, only in the last decades has a novel and unusual property of the GA been discovered to form water-soluble, supramolecular complexes with a variety of lipophilic drugs. These complexes show significant advantages over other known delivery systems, in particular, due to strong pH sensitivity, the properties of GA self-associates. In the present study, a supramolecular complex formation of the hypotensive and antiarrhythmic drug nifedipine with GA has been studied at different pH values, corresponding to the different degrees of GA dissociation, including a fully dissociated state of GA. Both NMR experiments and molecular dynamics simulations demonstrate the existence of the nifedipine complex with GA at all dissociation states of GA. However, optical absorption experiments show the decrease of complex stability and solubility at pH > 6 when the GA molecule is fully deprotonated. It means the higher release rate of the drug in a neutral and basic environment compared with acid media. These results could form the basis of follow-up studies of GA self-associates as pH-controlled drug delivery systems.


Assuntos
Sistemas de Liberação de Medicamentos , Ácido Glicirrízico/química , Medicina Tradicional Chinesa , Nifedipino/química , Glycyrrhiza/química , Ácido Glicirrízico/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Nifedipino/farmacologia , Raízes de Plantas/química
18.
Molecules ; 26(16)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34443652

RESUMO

Deferasirox is an orally active, lipophilic iron chelating drug used on thousands of patients worldwide for the treatment of transfusional iron overload. The essential transition metals iron and copper are the primary catalysts of reactive oxygen species and oxidative damage in biological systems. The redox effects of deferasirox and its metal complexes with iron, copper and other metals are of pharmacological, toxicological, biological and physiological importance. Several molecular model systems of oxidative damage caused by iron and copper catalysis including the oxidation of ascorbic acid, the peroxidation of linoleic acid micelles and the oxidation of dihydropyridine have been investigated in the presence of deferasirox using UV-visible and NMR spectroscopy. Deferasirox has shown antioxidant activity in all three model systems, causing substantial reduction in the rate of oxidation and oxidative damage. Deferasirox showed the greatest antioxidant activity in the oxidation of ascorbic acid with the participation of iron ions and reduced the reaction rate by about a 100 times. Overall, deferasirox appears to have lower affinity for copper in comparison to iron. Comparative studies of the antioxidant activity of deferasirox and the hydrophilic oral iron chelating drug deferiprone in the peroxidation of linoleic acid micelles showed lower efficiency of deferasirox in comparison to deferiprone.


Assuntos
Antioxidantes/farmacologia , Deferasirox/farmacologia , Metais/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ácido Ascórbico/farmacologia , Complexos de Coordenação/farmacologia , Deferiprona/farmacologia , Humanos , Ferro/metabolismo , Quelantes de Ferro/farmacologia , Sobrecarga de Ferro/tratamento farmacológico , Sobrecarga de Ferro/metabolismo , Ácido Linoleico/farmacologia , Oxirredução/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
19.
Molecules ; 26(6)2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33802031

RESUMO

Nimesulide (NIM, N-(4-nitro-2-phenoxyphenyl)methanesulfonamide) is a relatively new nonsteroidal anti-inflammatory analgesic drug. It is practically insoluble in water (<0.02 mg/mL). This very poor aqueous solubility of the drug may lead to low bioavailability. The objective of the present study was to investigate the possibility of improving the solubility and the bioavailability of NIM via complexation with polysaccharide arabinogalactan (AG), disodium salt of glycyrrhizic acid (Na2GA), hydroxypropyl-ß-cyclodextrin (HP-ß-CD) and MgCO3. Solid dispersions (SD) have been prepared using a mechanochemical technique. The physical properties of nimesulide SD in solid state were characterized by differential scanning calorimetry and X-ray diffraction studies. The characteristics of the water solutions which form from the obtained solid dispersions were analyzed by reverse phase and gel permeation HPLC. It was shown that solubility increases for all complexes under investigation. These phenomena are obliged by complexation with auxiliary substances, which was shown by 1H-NMR relaxation methods. The parallel artificial membrane permeability assay (PAMPA) was used for predicting passive intestinal absorption. Results showed that mechanochemically obtained complexes with polysaccharide AG, Na2GA, and HP-ß-CD enhanced permeation of NIM across an artificial membrane compared to that of the pure NIM. The complexes were examined for anti-inflammatory activity on a model of histamine edema. The substances were administered per os to CD-1 mice. As a result, it was found that all investigated complexes dose-dependently reduce the degree of inflammation. The best results were obtained for the complexes of NIM with Na2GA and HP-ß-CD. In noted case the inflammation can be diminished up to 2-fold at equal doses of NIM.


Assuntos
Galactanos/farmacologia , Sulfonamidas/química , Sulfonamidas/farmacologia , 2-Hidroxipropil-beta-Ciclodextrina/química , Animais , Anti-Inflamatórios não Esteroides/química , Disponibilidade Biológica , Varredura Diferencial de Calorimetria/métodos , Química Farmacêutica/métodos , Galactanos/química , Ácido Glicirrízico/química , Magnésio/química , Masculino , Camundongos , Permeabilidade , Preparações Farmacêuticas , Solubilidade , Difração de Raios X/métodos , beta-Ciclodextrinas/química
20.
J Membr Biol ; 253(4): 343-356, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32725429

RESUMO

The effect of the natural saponin glycyrrhizic acid (GA) and polysaccharide arabinogalactan (AG) on the transmembrane potential of rat thymocytes was investigated using the potential-sensitive fluorescent probe 4-(p-dimethylaminostyryl)-1-methylpyridinium (DSM). Incubation of cells with GA in micellar form resulted in a decrease of the amplitude of observed fluorescence kinetics that points out to a decrease of the transmembrane potential. The proposed mechanism is an increase of membrane ion permeability (passive ion transport) of the plasma cell membrane due to GA incorporation. The incorporation of GA molecules into the cell membrane is extremely sensitive to the degree of GA dissociation. The neutral form of glycyrrhizic acid enters the lipid bilayer in contrast to the deprotonated anionic form. The incubation of rat thymocytes with anionic form of GA, namely with its disodium salt, has no effect on the fluorescence kinetics. The possible reasons of this phenomenon are discussed in the light of the nuclear magnetic resonance (NMR) and molecular dynamics (MD) data. The treatment of thymocytes with AG affects only the initial rate of the probe incorporation. The proposed mechanism is that AG covers the surface of the cell membrane and forms a barrier for the probe. Additionally, our experiments demonstrated that both polysaccharide AG and GA in the neutral form (but not Na2GA) effectively capture the cationic probe in an aqueous solution and then deliver it to the cell membrane.


Assuntos
Galactanos/farmacologia , Ácido Glicirrízico/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Timócitos/efeitos dos fármacos , Timócitos/fisiologia , Animais , Permeabilidade da Membrana Celular/efeitos dos fármacos , Corantes Fluorescentes , Galactanos/química , Ácido Glicirrízico/química , Concentração de Íons de Hidrogênio , Cinética , Espectroscopia de Ressonância Magnética , Masculino , Conformação Molecular , Simulação de Dinâmica Molecular , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA