Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochemistry ; 49(11): 2551-62, 2010 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-20184361

RESUMO

Typically, biochemical screens that employ pure macromolecular components focus on single targets or a small number of interacting components. Researches rely on whole cell screens for more complex systems. Bacterial DNA replicases contain multiple subunits that change interactions with each stage of a complex reaction. Thus, the actual number of targets is a multiple of the proteins involved. It is estimated that the overall replication reaction includes up to 100 essential targets, many suitable for discovery of antibacterial inhibitors. We have developed an assay, using purified protein components, in which inhibitors of any of the essential targets can be detected through a common readout. Use of purified components allows each protein to be set within the linear range where the readout is proportional to the extent of inhibition of the target. By performing assays against replicases from model Gram-negative and Gram-positive bacteria in parallel, we show that it is possible to distinguish compounds that inhibit only a single bacterial replicase from those that exhibit broad spectrum potential.


Assuntos
Bactérias/enzimologia , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/farmacologia , Inibidores da Síntese de Ácido Nucleico , Replicação do DNA/efeitos dos fármacos , DNA Bacteriano/biossíntese , DNA Polimerase Dirigida por DNA , Inibidores Enzimáticos/química , Ensaios de Triagem em Larga Escala , Humanos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Especificidade por Substrato
2.
J Bacteriol ; 186(24): 8478-89, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15576798

RESUMO

Gene products required for in vivo growth and survival of microbial pathogens comprise a unique functional class and may represent new targets for antimicrobial chemotherapy, vaccine construction, or diagnostics. Although some factors governing Staphylococcus aureus pathogenicity have been identified and studied, a comprehensive genomic analysis of virulence functions will be a prerequisite for developing a global understanding of interactions between this pathogen and its human host. In this study, we describe a genetic screening strategy and demonstrate its use in screening a collection of 6,300 S. aureus insertion mutants for virulence attenuation in a murine model of systemic infection. Ninety-five attenuated mutants were identified, reassembled into new pools, and rescreened using the same murine model. This effort identified 24 highly attenuated mutants, each of which was further characterized for virulence attenuation in vivo and for growth phenotypes in vitro. Mutants were recovered in numbers up to 1,200-fold less than wild type in the spleens of systemically infected animals and up to 4,000-fold less than wild type in localized abscess infections. Genetic analysis of the mutants identified insertions in 23 unique genes. The largest gene classes represented by these mutants encoded enzymes involved in small-molecule biosynthesis and cell surface transmembrane proteins involved in small-molecule binding and transport. Additionally, three insertions defined two histidine kinase sensor-response regulator gene pairs important for S. aureus in vivo survival. Our findings extend the understanding of pathogenic mechanisms employed by S. aureus to ensure its successful growth and survival in vivo. Many of the gene products we have identified represent attractive new targets for antibacterial chemotherapy.


Assuntos
Bacteriemia/microbiologia , Proteínas de Bactérias/genética , Genes Bacterianos , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/patogenicidade , Virulência/genética , Animais , Elementos de DNA Transponíveis , Modelos Animais de Doenças , Feminino , Biblioteca Gênica , Marcadores Genéticos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Mutagênese Insercional , Staphylococcus aureus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA