RESUMO
PURPOSE: Chronic axial low-back pain is a debilitating disorder that impacts all aspects of an afflicted individual's life. Effective, durable treatments have historically been elusive. Interventional therapies, such as spinal cord stimulation (SCS), have shown limited efficacy at best. Recently, a novel treatment, 10 kHz SCS, has demonstrated superior pain relief compared with traditional SCS in a randomized controlled trial (RCT). In this manuscript, we report on the long-term improvements in quality of life (QoL) outcomes for subjects enrolled in this study. METHODS: A prospective, multicenter, randomized controlled trial (SENZA-RCT) was conducted. Patients with both chronic back and leg pain were enrolled and randomized (1:1) into 10 kHz SCS or traditional SCS treatment groups. A total of 171 subjects received a permanent SCS device implant. QoL and functionality measures were collected up to 12 months. The device remote control utilization, which is an indication of patient interaction with the device for adjustments, was collected at 24-month post-implantation. RESULTS: At 12 months, a higher proportion of 10 kHz SCS subjects had marked improvement of their disability (Oswestry Disability Index) to a "moderate" or "minimal" impact on their daily function versus the control group. The subjects also reported better improvement in the Global Assessment of Functioning, Clinician Global Impression of Change, Pittsburgh Sleep Quality Index, and short-form McGill Pain Questionnaire, compared to traditional SCS subjects. The 10 kHz SCS subjects also reported far higher rates of both driving and sleeping with their device turned on, as well as reduced reliance on their programmers to adjust therapy settings. CONCLUSIONS: In addition to superior pain relief, 10 kHz SCS provides long-term improvements in quality of life and functionality for subjects with chronic low-back and leg pain. TRIAL REGISTRATION: ClinicalTrials.gov (NCT01609972).
Assuntos
Dor Crônica/terapia , Dor Lombar/terapia , Neuralgia/terapia , Manejo da Dor/métodos , Qualidade de Vida/psicologia , Estimulação da Medula Espinal/métodos , Adulto , Idoso , Dor Crônica/psicologia , Feminino , Humanos , Dor Lombar/psicologia , Masculino , Pessoa de Meia-Idade , Medição da Dor/métodos , Estudos Prospectivos , Coluna Vertebral/patologia , Inquéritos e Questionários , Resultado do Tratamento , Escala Visual AnalógicaRESUMO
BACKGROUND: Polyetheretherketone (PEEK) and its composites are polymers resistant to fatigue strain, radiologically transparent, and have mechanical properties suitable for a range of orthopaedic applications. In bulk form, PEEK composites are generally accepted as biocompatible. In particulate form, however, the biologic response relevant to joint replacement devices remains unclear. The biologic response to wear particles affects the longevity of total joint arthroplasties. Particles in the phagocytozable size range of 0.1 µm to 10 µm are considered the most biologically reactive, particularly particles with a mean size of < 1 µm. This systematic review aimed to identify the current evidence for the biologic response to PEEK-based wear debris from total joint arthroplasties. QUESTIONS/PURPOSES: (1) What are the quantitative characteristics of PEEK-based wear particles produced by total joint arthroplasties? (2) Do PEEK wear particles cause an adverse biologic response when compared with UHMWPE or a similar negative control biomaterial? (3) Is the biologic response affected by particle characteristics? METHODS: Embase and Ovid Medline databases were searched for studies that quantified PEEK-based particle characteristics and/or investigated the biologic response to PEEK-based particles relevant to total joint arthroplasties. The keyword search included brands of PEEK (eg, MITCH, MOTIS) or variations of PEEK types and nomenclature (eg, PAEK, CFR-PEEK) in combination with types of joint (eg, hip, knee) and synonyms for wear debris or immunologic response (eg, particles, cytotoxicity). Peer-reviewed studies, published in English, investigating total joint arthroplasty devices and cytotoxic effects of PEEK particulates were included. Studies investigating devices without articulating bearings (eg, spinal instrumentation devices) and bulk material or contact cytotoxicity were excluded. Of 129 studies, 15 were selected for analysis and interpretation. No studies were found that isolated and characterized PEEK wear particles from retrieved periprosthetic human tissue samples. RESULTS: In the four studies that quantified PEEK-based particles produced using hip, knee, and spinal joint replacement simulators, the mean particle size was 0.23 µm to 2.0 µm. The absolute range reported was approximately 0.01 µm to 50 µm. Rod-like carbon particulates and granular-shaped PEEK particles were identified in human tissue by histologic analysis. Ten studies, including six animal models (rat, mouse, and rabbit), three cell line experiments, and two human tissue retreival studies, investigated the biologic response to PEEK-based particles. Qualitative histologic assessments showed immunologic cell infiltration to be similar for PEEK particles when compared with UHMWPE particles in all six of the animal studies identified. However, increased inflammatory cytokine release (such as tumor necrosis factor-α) was identified in only one in vitro study, but without substantial suppression in macrophage viability. Only one study tested the effects of particle size on cytotoxicity and found the largest unfilled PEEK particles (approximately 13 µm) to have a toxic effect; UHMWPE particles in the same size range showed a similar cytotoxic effect. CONCLUSIONS: Wear particles produced by PEEK-based bearings were, in almost all cases, in the phagocytozable size range (0.1-10 µm). The studies that evaluated the biologic response to PEEK-based particles generally found cytotoxicity to be within acceptable limits relative to the UHMWPE control, but inconsistent when inflammatory cytokine release was considered. CLINICAL RELEVANCE: To translate new and advanced materials into clinical use more quickly, the clinical relevance and validity of preclinical tests need to be improved. To achieve this for PEEK-based devices, human tissue retrieval studies including subsequent particle isolation and characterization analyses are required. In vitro cell studies using isolated wear particles from tissue or validated joint replacement simulators, instead of manufactured particles, are also required.
Assuntos
Artroplastia de Substituição/efeitos adversos , Artroplastia de Substituição/instrumentação , Reação a Corpo Estranho/etiologia , Prótese Articular/efeitos adversos , Cetonas/efeitos adversos , Polietilenoglicóis/efeitos adversos , Animais , Benzofenonas , Citocinas/imunologia , Citocinas/metabolismo , Reação a Corpo Estranho/imunologia , Reação a Corpo Estranho/metabolismo , Humanos , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Cetonas/química , Tamanho da Partícula , Fagocitose , Polietilenoglicóis/química , Polietilenos/efeitos adversos , Polímeros , Desenho de Prótese , Falha de Prótese , Fatores de Risco , Estresse Mecânico , Resultado do TratamentoRESUMO
BACKGROUND: Therapeutic decisions in cancer are generally guided by molecular biomarkers or, for some newer therapeutics, primary tumor genotype. However, because biomarkers or genotypes may change as new metastases emerge, circulating tumor cells (CTCs) from blood are being investigated for a role in guiding real-time drug selection during disease progression, expecting that CTCs will comprehensively represent the full spectrum of genomic changes in metastases. However, information is limited regarding mutational heterogeneity among CTCs and metastases in breast cancer as discerned by single cell analysis. The presence of disseminated tumor cells (DTCs) in bone marrow also carry prognostic significance in breast cancer, but with variability between CTC and DTC detection. Here we analyze a series of single tumor cells, CTCs, and DTCs for PIK3CA mutations and report CTC and corresponding metastatic genotypes. METHODS: We used the MagSweeper, an immunomagnetic separation device, to capture live single tumor cells from breast cancer patients' primary and metastatic tissues, blood, and bone marrow. Single cells were screened for mutations in exons 9 and 20 of the PIK3CA gene. Captured DTCs grown in cell culture were also sequenced for PIK3CA mutations. RESULTS: Among 242 individual tumor cells isolated from 17 patients and tested for mutations, 48 mutated tumor cells were identified in three patients. Single cell analyses revealed mutational heterogeneity among CTCs and tumor cells in tissues. In a patient followed serially, there was mutational discordance between CTCs, DTCs, and metastases, and among CTCs isolated at different time points. DTCs from this patient propagated in vitro contained a PIK3CA mutation, which was maintained despite morphological changes during 21 days of cell culture. CONCLUSIONS: Single cell analysis of CTCs can demonstrate genotypic heterogeneity, changes over time, and discordance from DTCs and distant metastases. We present a cautionary case showing that CTCs from any single blood draw do not always reflect metastatic genotype, and that CTC and DTC analyses may provide independent clinical information. Isolated DTCs remain viable and can be propagated in culture while maintaining their original mutational status, potentially serving as a future resource for investigating new drug therapies.
Assuntos
Medula Óssea/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Mutação , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patologia , Fosfatidilinositol 3-Quinases/genética , Análise de Célula Única , Classe I de Fosfatidilinositol 3-Quinases , Análise Mutacional de DNA , Éxons , Feminino , Humanos , Metástase Neoplásica , Análise de Célula Única/métodosRESUMO
Introduction: Understanding the genetic mechanisms behind muscle growth and development is crucial for improving the efficiency of animal protein production. Recent poultry studies have identified genes related to muscle development and explored how environmental stressors, such as temperature extremes, affect protein production and meat quality. Non-coding RNAs, including circular RNAs (circRNAs), play crucial roles in modulating gene expression and regulating the translation of mRNAs into proteins. This study examined circRNA expression in turkey skeletal muscle stem cells under thermal stress. The objectives were to identify and quantify circRNAs, assess circRNA abundance following RNAse R depletion, identify differentially expressed circRNAs (DECs), and predict potential microRNA (miRNA) targets for DECs and their associated genes. Materials and methods: Cultured cells from two genetic lines (Nicholas commercial turkey and The Ohio State Random Bred Control 2) under three thermal treatments: cold (33°C), control (38°C), and hot (43°C) were compared at both the proliferation and differentiation stages. CircRNA prediction and differential expression and splicing analyses were conducted using the CIRIquant pipeline for both the untreated and RNase R depletion treated libraries. Predicted interactions between DECs and miRNAs, as well as the potential impact of circRNA secondary structure on these interactions, were investigated. Results: A total of 11,125 circRNAs were predicted within the treatment groups, between both untreated and RNase R treated libraries. Differential expression analyses indicated that circRNA expression was significantly altered by thermal treatments and the genetic background of the stem cells. A total of 140 DECs were identified across the treatment comparisons. In general, more DECs within temperature treatment comparisons were identified in the proliferation stage and more DECs within genetic line comparisons were identified in the differentiation stage. Discussion: This study highlights the significant impact of environmental stressors on non-coding RNAs and their role in gene regulation. Elucidating the role of non-coding RNAs in gene regulation can help further our understanding of muscle development and poultry production, underscoring the broader implications of this research for enhancing animal protein production efficiency.
RESUMO
Thermal stress alters the transcriptome and subsequent tissue physiology of poultry; thus, it can negatively impact poultry production through reduced meat quality, egg production, and health and wellbeing. The modulation of gene expression is critical to embryonic development and cell proliferation, and growing evidence suggests the role of non-coding RNAs (RNA:RNA interaction) in response to thermal stress in animals. MicroRNAs (miRNAs) comprise a class of small regulatory RNAs that modulate gene expression through posttranscriptional interactions and regulate mRNAs, potentially altering numerous cellular processes. This study was designed to identify and characterize the differential expression of miRNAs in satellite cells (SCs) from the turkey pectoralis major muscle and predict important miRNA:mRNA interactions in these developing SCs under a thermal challenge. Small RNA sequencing was performed on RNA libraries prepared from SCs cultured from 1-week-old male Nicholas commercial turkeys (NCTs) and non-selected Randombred Control Line 2 turkeys during proliferation and differentiation at the control temperature (38°C) or under a thermal challenge (33°C or 43°C). A total of 353 miRNAs (161 known and 192 novel) were detected across the sequenced libraries. Expression analysis found fewer differentially expressed miRNAs in the SCs of NCT birds, suggesting that the miRNA response to heat stress has been altered in birds selected for their modern commercial growth traits. Differentially expressed miRNAs, including those with described roles in muscle development, were detected both among temperature treatments and between genetic lines. A prominent differential expression of miR-206 was found in proliferating turkey SCs with a significant response to thermal challenges in both lines. In differentiating SCs, isoforms of miR-1 had significant differential responses, with the expression of miR-206 being mainly affected only by cold treatment. Target gene predictions and Gene Ontology analysis suggest that the differential expression of miRNAs during thermal stress could significantly affect cellular proliferation and differentiation.
RESUMO
Aseptic loosening and osteolysis continue to be a short- to mid-term problem for total ankle replacement (TAR) devices. The production of wear particles may contribute to poor performance, but their characteristics are not well understood. This study aimed to determine the chemical composition, size and morphology of wear particles surrounding failed TARs. A recently developed wear particle isolation method capable of isolating both high- and low-density materials was applied to 20 retrieved periprosthetic tissue samples from 15 failed TARs of three different brands. Isolated particles were imaged using ultra-high-resolution imaging and characterised manually to determine their chemical composition, size, and morphology. Six different materials were identified, which included: UHMWPE, calcium phosphate (CaP), cobalt chromium alloy (CoCr), commercially pure titanium, titanium alloy and stainless steel. Eighteen of the 20 samples contained three or more different wear particle material types. In addition to sub-micron UHMWPE particles, which were present in all samples, elongated micron-sized shards of CaP and flakes of CoCr were commonly isolated from tissues surrounding AES TARs. The mixed particles identified in this study demonstrate the existence of a complex periprosthetic environment surrounding TAR devices. The presence of such particles suggests that early failure of devices may be due in part to the multifaceted biological cascade that ensues after particle release. This study could be used to support the validation of clinically-relevant wear simulator testing, pre-clinical assessment of fixation wear and biological response studies to improve the performance of next generation ankle replacement devices. STATEMENT OF SIGNIFICANCE: Total ankle replacement devices do not perform as well as total hip and knee replacements, which is in part due to the relatively poor scientific understanding of how they fail. The excessive production of certain types of wear debris is known to contribute to joint replacement failure. This is the first study to successfully isolate and characterise high- and low-density wear particles from tissues collected from patients with a failed total ankle replacement. This article includes the chemical composition and characteristics of the wear debris generated by ankle devices, all of which may affect their performance. This research provides clinically relevant reference values and images to support the development of pre-clinical testing for future total ankle replacement designs.
Assuntos
Artroplastia de Substituição do Tornozelo , Prótese de Quadril , Humanos , Titânio , Polietilenos , Ligas , Falha de Prótese , Tamanho da PartículaRESUMO
The enumeration of rare circulating epithelial cells (CEpCs) in the peripheral blood of metastatic cancer patients has shown promise for improved cancer prognosis. Moving beyond enumeration, molecular analysis of CEpCs may provide candidate surrogate endpoints to diagnose, treat, and monitor malignancy directly from the blood samples. Thorough molecular analysis of CEpCs requires the development of new sample preparation methods that yield easily accessible and purified CEpCs for downstream biochemical assays. Here, we describe a new immunomagnetic cell separator, the MagSweeper, which gently enriches target cells and eliminates cells that are not bound to magnetic particles. The isolated cells are easily accessible and can be extracted individually based on their physical characteristics to deplete any cells nonspecifically bound to beads. We have shown that our device can process 9 mL of blood per hour and captures >50% of CEpCs as measured in spiking experiments. We have shown that the separation process does not perturb the gene expression of rare cells. To determine the efficiency of our platform in isolating CEpCs from patients, we have isolated CEpCs from all 47 tubes of 9-mL blood samples collected from 17 women with metastatic breast cancer. In contrast, we could not find any circulating epithelial cells in samples from 5 healthy donors. The isolated CEpCs are all stored individually for further molecular analysis.
Assuntos
Células Sanguíneas/citologia , Separação Celular/instrumentação , Células Epiteliais/citologia , Magnetismo/instrumentação , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Simulação por Computador , Feminino , Regulação da Expressão Gênica , Antígeno HLA-A2/imunologia , Humanos , Modelos ImunológicosRESUMO
Submicron-sized wear particles are generally accepted as a potential cause of aseptic loosening when produced in sufficient volumes. With the accelerating use of increasingly wear-resistant biomaterials, identifying such particles and evaluating their biological response is becoming more challenging. Highly sensitive wear particle isolation methods have been developed but these methods cannot isolate the complete spectrum of particle types present in individual tissue samples. Two established techniques were modified to create one novel method to isolate both high- and low-density materials from periprosthetic tissue samples. Ten total hip replacement and eight total knee replacement tissue samples were processed. All particle types were characterized using high resolution scanning electron microscopy. UHMWPE and a range of high-density materials were isolated from all tissue samples, including: polymethylmethacrylate, zirconium dioxide, titanium alloy, cobalt chromium alloy and stainless steel. This feasibility study demonstrates the coexistence of mixed particle types in periprosthetic tissues and provides researchers with high-resolution images of clinically relevant wear particles that could be used as a reference for future in vitro biological response studies.
Assuntos
Artroplastia de Quadril , Artroplastia do Joelho , Prótese de Quadril , Ligas , Humanos , Tamanho da Partícula , Polietilenos , Falha de Prótese , TitânioRESUMO
BACKGROUND: Spinal cord stimulation (SCS) has been successfully used to treat chronic intractable pain for over 40 years. Successful clinical application of SCS is presumed to be generally dependent on maximizing paresthesia-pain overlap; critical to achieving this is positioning of the stimulation field at the physiologic midline. Recently, the necessity of paresthesia for achieving effective relief in SCS has been challenged by the introduction of 10 kHz paresthesia-free stimulation. In a large, prospective, randomized controlled pivotal trial, HF10 therapy was demonstrated to be statistically and clinically superior to paresthesia-based SCS in the treatment of severe chronic low back and leg pain. HF10 therapy, unlike traditional paresthesia-based SCS, requires no paresthesia to be experienced by the patient, nor does it require paresthesia mapping at any point during lead implant or post-operative programming. OBJECTIVES: To determine if pain relief was related to technical factors of paresthesia, we measured and analyzed the paresthesia responses of patients successfully using HF10 therapy. STUDY DESIGN: Prospective, multicenter, non-randomized, non-controlled interventional study. SETTING: Outpatient pain clinic at 10 centers across the US and Italy. METHODS: Patients with both back and leg pain already implanted with an HF10 therapy device for up to 24 months were included in this multicenter study. Patients provided pain scores prior to and after using HF10 therapy. Each patient's most efficacious HF10 therapy stimulation program was temporarily modified to a low frequency (LF; 60 Hz), wide pulse width (~470 mus), paresthesia-generating program. On a human body diagram, patients drew the locations of their chronic intractable pain and, with the modified program activated, all regions where they experienced LF paresthesia. Paresthesia and pain drawings were then analyzed to estimate the correlation of pain relief outcomes to overlap of pain by paresthesia, and the mediolateral distribution of paresthesia (as a surrogate of physiologic midline lead positioning). RESULTS: A total of 61 patients participated across 11 centers. Twenty-eight men and 33 women with a mean age of 56 ± 12 years of age participated in the study. The average duration of implantable pulse generator (IPG) implant was 19 ± 9 months. The average predominant pain score, as measured on a 0 - 10 visual analog scale (VAS), prior to HF10 therapy was 7.8 ± 1.3 and at time of testing was 2.5 ± 2.1, yielding an average pain relief of 70 ± 24%. For all patients, the mean paresthesia coverage of pain was 21 ± 28%, with 43% of patients having zero paresthesia coverage of pain. Analysis revealed no correlation between percentage of LF paresthesia overlap of predominant pain and HF10 therapy efficacy (P = 0.56). Exact mediolateral positioning of the stimulation electrodes was not found to be a statistically significant predictor of pain relief outcomes. LIMITATIONS: Non-randomized/non-controlled study design; short-term evaluation; certain technical factors not investigated. CONCLUSION: Both paresthesia concordance with pain and precise midline positioning of the stimulation contacts appear to be inconsequential technical factors for successful HF10 therapy application. These results suggest that HF10 therapy is not only paresthesia-free, but may be paresthesia-independent.
Assuntos
Dor Crônica/terapia , Parestesia/terapia , Estimulação da Medula Espinal , Adulto , Idoso , Animais , Feminino , Humanos , Itália , Masculino , Pessoa de Meia-Idade , Medição da Dor , Estudos Prospectivos , Medula Espinal/cirurgia , Resultado do Tratamento , Estados UnidosRESUMO
BACKGROUND: There is a large body of evidence which suggests that bile acids increase the risk of colon cancer and act as tumor promoters, however, the mechanism(s) of bile acids mediated tumorigenesis is not clear. Previously we showed that deoxycholic acid (DCA), a tumorogenic bile acid, and ursodeoxycholic acid (UDCA), a putative chemopreventive agent, exhibited distinct biological effects, yet appeared to act on some of the same signaling molecules. The present study was carried out to determine whether there is overlap in signaling pathways activated by tumorogenic bile acid DCA and chemopreventive bile acid UDCA. METHODS: To determine whether there was an overlap in activation of signaling pathways by DCA and UDCA, we mutagenized HCT116 cells and then isolated cell lines resistant to UDCA induced growth arrest. These lines were then tested for their response to DCA induced apoptosis. RESULTS: We found that a majority of the cell lines resistant to UDCA-induced growth arrest were also resistant to DCA-induced apoptosis, implying an overlap in DCA and UDCA mediated signaling. Moreover, the cell lines which were the most resistant to DCA-induced apoptosis also exhibited a greater capacity for anchorage independent growth. CONCLUSION: We conclude that UDCA and DCA have overlapping signaling activities and that disregulation of these pathways can lead to a more advanced neoplastic phenotype.
Assuntos
Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ácido Desoxicólico/farmacologia , Resistencia a Medicamentos Antineoplásicos , Neoplasias/prevenção & controle , Ácido Ursodesoxicólico/farmacologia , Antineoplásicos/farmacologia , Ácidos e Sais Biliares/farmacologia , Adesão Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/fisiologia , Células HCT116 , Humanos , Testes de Mutagenicidade , Poli(ADP-Ribose) Polimerases/metabolismoRESUMO
OBJECT: Neurosurgical patties are textile pads used during most neurosurgical operations to protect tissues, manage the fluid environment, control hemostasis, and aid tissue manipulation. Recent research has suggested that, contrary to their aim, patties adhere to brain tissue and cause damage during removal. This study aimed to characterize and quantify the degree of and consequences resulting from adhesion between neurosurgical patties and brain tissue. METHODS: Using a customized peel apparatus, the authors performed 90° peel tests on 5 patty products: Policot, Telfa, Americot, Delicot, and Ray-Cot (n = 247) from American Surgical Company. They tested 4 conditions: wet patty on glass (control), wet patty on wet brain peeled at 5 mm/sec (wet), dry patty on wet brain peeled at 5 mm/sec (dry), and wet patty on wet brain peeled at 20 mm/sec (speed). The interaction between patty and tissue was analyzed using peel-force traces and pre-peel histological analysis. RESULTS: Adhesion strength differed between patty products (p < 0.001) and conditions (p < 0.001). Adhesion strength was greatest for Delicot patties under wet (2.22 mN/mm) and dry (9.88 mN/mm) conditions. For all patties, damage at the patty-tissue interface was proportional to the degree of fiber contact. When patties were irrigated, mechanical adhesion was reduced by up to 550% compared with dry usage. CONCLUSIONS: For all patty products, mechanical (destructive) and liquid-mediated (nondestructive) adhesion caused damage to neural tissue. The greatest adhesion occurred with Delicot patties. To mitigate patty adhesion and neural tissue damage, surgeons should consider regular irrigation to be essential during neurosurgical procedures.
Assuntos
Lesões Encefálicas/etiologia , Procedimentos Neurocirúrgicos/métodos , Tampões de Gaze Cirúrgicos/efeitos adversos , Aderências Teciduais/etiologia , Animais , Lesões Encefálicas/prevenção & controle , Humanos , Doença Iatrogênica/prevenção & controle , Teste de Materiais , Modelos Animais , Procedimentos Neurocirúrgicos/efeitos adversos , Suínos , Têxteis , Aderências Teciduais/prevenção & controleRESUMO
BACKGROUND: To improve cancer therapy, it is critical to target metastasizing cells. Circulating tumor cells (CTCs) are rare cells found in the blood of patients with solid tumors and may play a key role in cancer dissemination. Uncovering CTC phenotypes offers a potential avenue to inform treatment. However, CTC transcriptional profiling is limited by leukocyte contamination; an approach to surmount this problem is single cell analysis. Here we demonstrate feasibility of performing high dimensional single CTC profiling, providing early insight into CTC heterogeneity and allowing comparisons to breast cancer cell lines widely used for drug discovery. METHODOLOGY/PRINCIPAL FINDINGS: We purified CTCs using the MagSweeper, an immunomagnetic enrichment device that isolates live tumor cells from unfractionated blood. CTCs that met stringent criteria for further analysis were obtained from 70% (14/20) of primary and 70% (21/30) of metastatic breast cancer patients; none were captured from patients with non-epithelial cancer (n = 20) or healthy subjects (n = 25). Microfluidic-based single cell transcriptional profiling of 87 cancer-associated and reference genes showed heterogeneity among individual CTCs, separating them into two major subgroups, based on 31 highly expressed genes. In contrast, single cells from seven breast cancer cell lines were tightly clustered together by sample ID and ER status. CTC profiles were distinct from those of cancer cell lines, questioning the suitability of such lines for drug discovery efforts for late stage cancer therapy. CONCLUSIONS/SIGNIFICANCE: For the first time, we directly measured high dimensional gene expression in individual CTCs without the common practice of pooling such cells. Elevated transcript levels of genes associated with metastasis NPTN, S100A4, S100A9, and with epithelial mesenchymal transition: VIM, TGFß1, ZEB2, FOXC1, CXCR4, were striking compared to cell lines. Our findings demonstrate that profiling CTCs on a cell-by-cell basis is possible and may facilitate the application of 'liquid biopsies' to better model drug discovery.
Assuntos
Neoplasias da Mama , Regulação Neoplásica da Expressão Gênica , Células Neoplásicas Circulantes , Análise de Célula Única/instrumentação , Neoplasias da Mama/sangue , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Feminino , Perfilação da Expressão Gênica , Humanos , Linfoma/sangue , Análise em Microsséries/métodos , Técnicas Analíticas Microfluídicas , Metástase Neoplásica , Células Neoplásicas Circulantes/metabolismo , Análise de Célula Única/métodosRESUMO
Agents that can modulate colonic environment and control dysregulated signaling are being evaluated for their chemopreventive potential in colon cancer. Ursodeoxycholate (UDCA) has shown chemopreventive potential in preclinical and animal models of colon cancer, but the mechanism behind it remains unknown. Here biological effects of UDCA were examined to understand mechanism behind its chemoprevention in colon cancer. Our data suggests that UDCA can suppress growth in a wide variety of cancer cell lines and can induce low level of apoptosis in colon cancer cells. We also found that UDCA treatment induces alteration in morphology, increased cell size, upregulation of cytokeratin 8, 18 and 19 and E-cadherin, cytokeratin remodeling and accumulation of lipid droplets, suggesting that UDCA induces differentiation in colon carcinoma cells. Our results also suggest significant differences in UDCA and sodium butyrate induced functional differentiation. We also report for the first time that UDCA can induce senescence in colon cancer cells as assessed by flattened, spread out and vacuolated morphology as well as by senescence marker beta-galactosidase staining. We also found that UDCA inhibits the telomerase activity. Surprisingly, we found that UDCA is not a histone deacytylase inhibitor but instead induces hypoacetylation of histones unlike hyperacetylation induced by sodium butyrate. Our results also suggest that, although UDCA induced senescence is p53, p21 and Rb independent, HDAC6 appears to be important in UDCA induced senescence. In summary, our data shows that UDCA modulates chromatin by inducing histone hypoacetylation and induces differentiation and senescence in colon cancer cells.
Assuntos
Diferenciação Celular/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Histonas/metabolismo , Ácido Ursodesoxicólico/farmacologia , Acetilação/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Butiratos/farmacologia , Caderinas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Tamanho Celular/efeitos dos fármacos , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Relação Dose-Resposta a Droga , Células HCT116 , Células HT29 , Humanos , Proteínas Inibidoras de Apoptose/metabolismo , Queratina-18/metabolismo , Queratina-19/metabolismo , Queratina-8/metabolismo , Proteína do Retinoblastoma/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima/efeitos dos fármacosRESUMO
This paper presents a novel device which provides the opportunity to perform high-throughput biochemical assays on different individual cells. In particular, the proposed device is suited to screen the rare cells in biological samples for early stage cancer diagnosis and explore their biochemical functionality. In the process, single cells are precisely positioned and captured in activated micropores. To show the performance of the proposed device, cultured yeast cells and human epithelial circulating tumor cells are successfully captured.