Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 95(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39037296

RESUMO

In H-mode tokamak plasmas, the plasma is sometimes ejected beyond the edge transport barrier. These events are known as edge localized modes (ELMs). ELMs cause a loss of energy and damage the vessel walls. Understanding the physics of ELMs, and by extension, how to detect and mitigate them, is an important challenge. In this paper, we focus on two diagnostic methods-deuterium-alpha (Dα) spectroscopy and Doppler backscattering (DBS). The former detects ELMs by measuring Balmer alpha emission, while the latter uses microwave radiation to probe the plasma. DBS has the advantages of having a higher temporal resolution and robustness to damage. These advantages of DBS diagnostic may be beneficial for future operational tokamaks, and thus, data processing techniques for DBS should be developed in preparation. In sight of this, we explore the training of neural networks to detect ELMs from DBS data, using Dα data as the ground truth. With shots found in the DIII-D database, the model is trained to classify each time step based on the occurrence of an ELM event. The results are promising. When tested on shots similar to those used for training, the model is capable of consistently achieving a high f1-score of 0.93. This score is a performance metric for imbalanced datasets that ranges between 0 and 1. We evaluate the performance of our neural network on a variety of ELMs in different high confinement regimes (grassy ELM, RMP mitigated, and wide-pedestal), finding broad applicability. Beyond ELMs, our work demonstrates the wider feasibility of applying neural networks to data from DBS diagnostic.

2.
Rev Sci Instrum ; 93(10): 103536, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36319398

RESUMO

We use the beam model of Doppler backscattering (DBS), which was previously derived from beam tracing and the reciprocity theorem, to shed light on mismatch attenuation. This attenuation of the backscattered signal occurs when the wavevector of the probe beam's electric field is not in the plane perpendicular to the magnetic field. Correcting for this effect is important for determining the amplitude of the actual density fluctuations. Previous preliminary comparisons between the model and Mega-Ampere Spherical Tokamak (MAST) plasmas were promising. In this work, we quantitatively account for this effect on DIII-D, a conventional tokamak. We compare the predicted and measured mismatch attenuation in various DIII-D, MAST, and MAST-U plasmas, showing that the beam model is applicable in a wide variety of situations. Finally, we performed a preliminary parameter sweep and found that the mismatch tolerance can be improved by optimizing the probe beam's width and curvature at launch. This is potentially a design consideration for new DBS systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA