Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Phycol ; 58(4): 517-529, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35657106

RESUMO

Global climate changes, such as warming and ocean acidification (OA), are likely to negatively impact calcifying marine taxa. Abundant and ecologically important coralline algae may be particularly susceptible to OA; however, multi-stressor studies and those on articulated morphotypes are lacking. Here, we use field observations and laboratory experiments to elucidate the impacts of warming and acidification on growth, calcification, mineralogy, and photophysiology of the temperate articulated coralline alga, Calliarthron tuberculosum. We conducted a 4-week fully factorial mesocosm experiment exposing individuals from a southern CA kelp forest to current and future temperature and pH/pCO2 conditions (+2°C, -0.5 pH units). Calcification was reduced under warming (70%) and further reduced by high pCO2 or high pCO2 x warming (~150%). Growth (change in linear extension and surface area) was reduced by warming (40% and 50%, respectively), high pCO2 (20% and 40%, respectively), and high pCO2 x warming (50% and 75%, respectively). The maximum photosynthetic rate (Pmax ) increased by 100% under high pCO2 conditions, but we did not detect an effect of pCO2 or warming on photosynthetic efficiency (α). We also did not detect the effect of warming or pCO2 on mineralogy. However, variation in Mg incorporation in cell walls of different cell types (i.e., higher mol % Mg in cortical vs. medullary) was documented for the first time in this species. These results support findings from a growing body of literature suggesting that coralline algae are often more negatively impacted by warming than OA, with the potential for antagonistic effects when factors are combined.


Assuntos
Rodófitas , Água do Mar , Mudança Climática , Concentração de Íons de Hidrogênio , Oceanos e Mares , Fotossíntese/fisiologia , Rodófitas/fisiologia
2.
Proc Biol Sci ; 281(1778): 20133069, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24452029

RESUMO

Diseases threaten the structure and function of marine ecosystems and are contributing to the global decline of coral reefs. We currently lack an understanding of how climate change stressors, such as ocean acidification (OA) and warming, may simultaneously affect coral reef disease dynamics, particularly diseases threatening key reef-building organisms, for example crustose coralline algae (CCA). Here, we use coralline fungal disease (CFD), a previously described CCA disease from the Pacific, to examine these simultaneous effects using both field observations and experimental manipulations. We identify the associated fungus as belonging to the subphylum Ustilaginomycetes and show linear lesion expansion rates on individual hosts can reach 6.5 mm per day. Further, we demonstrate for the first time, to our knowledge, that ocean-warming events could increase the frequency of CFD outbreaks on coral reefs, but that OA-induced lowering of pH may ameliorate outbreaks by slowing lesion expansion rates on individual hosts. Lowered pH may still reduce overall host survivorship, however, by reducing calcification and facilitating fungal bio-erosion. Such complex, interactive effects between simultaneous extrinsic environmental stressors on disease dynamics are important to consider if we are to accurately predict the response of coral reef communities to future climate change.


Assuntos
Organismos Aquáticos/microbiologia , Água do Mar/microbiologia , Animais , Antozoários/microbiologia , Mudança Climática , Recifes de Corais , Concentração de Íons de Hidrogênio , Oceanos e Mares , Dinâmica Populacional , Água do Mar/química
3.
PLoS One ; 18(10): e0288548, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37819926

RESUMO

The urgent need to remediate ocean acidification has brought attention to the ability of marine macrophytes (seagrasses and seaweeds) to take up carbon dioxide (CO2) and locally raise seawater pH via primary production. This physiological process may represent a powerful ocean acidification mitigation tool in coastal areas. However, highly variable nearshore environmental conditions pose uncertainty in the extent of the amelioration effect. We developed experiments in aquaria to address two interconnected goals. First, we explored the individual capacities of four species of marine macrophytes (Ulva lactuca, Zostera marina, Fucus vesiculosus and Saccharina latissima) to ameliorate seawater acidity in experimentally elevated pCO2. Second, we used the most responsive species (i.e., S. latissima) to assess the effects of high and low water residence time on the amelioration of seawater acidity in ambient and simulated future scenarios of climate change across a gradient of irradiance. We measured changes in dissolved oxygen, pH, and total alkalinity, and derived resultant changes to dissolved inorganic carbon (DIC) and calcium carbonate saturation state (Ω). While all species increased productivity under elevated CO2, S. latissima was able to remove DIC and alter pH and Ω more substantially as CO2 increased. Additionally, the amelioration of seawater acidity by S. latissima was optimized under high irradiance and high residence time. However, the influence of water residence time was insignificant under future scenarios. Finally, we applied predictive models as a function of macrophyte biomass, irradiance, and residence time conditions in ambient and future climatic scenarios to allow projections at the ecosystem level. This research contributes to understanding the biological and physical drivers of the coastal CO2 system.


Assuntos
Ecossistema , Água do Mar , Concentração de Íons de Hidrogênio , Dióxido de Carbono/análise , Acidificação dos Oceanos , Água , Oceanos e Mares
4.
Front Vet Sci ; 10: 1153097, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37483286

RESUMO

Introduction: There is a growing interest in utilizing seaweed in ruminant diets for mitigating enteric methane (CH4) emissions while improving animal health. Chondrus crispus is a red seaweed that grows in the Gulf of Maine (United States) and has shown to suppress CH4 production in vitro. Organic dairy producers in Maine are currently feeding seaweed due to herd health promoting benefits. However, large-scale adoption depends on technical and financial factors, as well as validation from pilot studies. Methods: A survey was developed to identify barriers and drivers towards the adoption of CH4-reducing algal-based feeds. Concurrently, a randomized complete block design study was conducted to investigate the effect of C. crispus on enteric CH4 emissions and milk production in a typical Maine organic dairy farm. Twenty-two organically certified Holstein and Jersey cows averaging 29 ± 6.8 kg of milk/d and 150 ± 69 days in milk, were blocked and randomly assigned to a control diet without C. crispus (0CC), or with 6% [dry matter (DM) basis] C. crispus (6CC). Samples were collected on the last week of the 2-wk covariate period, and wk 3, 5, 8, and 10 after initiation of treatments for a total of 12 weeks. Gaseous emissions were measured using a GreenFeed unit. Data were analyzed using the MIXED procedure of SAS with repeated measures over time. Results: All survey respondents (n = 35; 54% response rate) were familiar with seaweeds as feed, and 34% were already users. Producers who were willing to pay 0.64 USD/cow/d on average for a CH4-reducing algal-based feed, also stated the need for co-benefits in terms of cattle health and performance as a requirement for adoption. Feeding 6CC decreased enteric CH4 production by 13.9% compared with 0CC (401 vs. 466 g/d). Further, milk yield (mean = 27.1 kg/d), CH4 intensity (mean = 15.2 g of CH4/kg of energy corrected milk), and concentrations and yields of milk fat and true protein were not affected by treatments. Discussion: Producer receptiveness to CH4-reducing algal-based feeds will not only be dependent on purchase price, but also on co-benefits and simplicity of integration into existing feed practices. Feeding C. crispus at 6% of the diet DM decreased CH4 production in dairy cows by 13.9% without negative effects on milk yield and composition. Identifying the bioactive compounds in C. crispus is critical to understand the effect of this red seaweed on mitigating enteric CH4 emissions in dairy cows.

5.
Front Vet Sci ; 7: 597430, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33426018

RESUMO

Enteric methane emissions are the single largest source of direct greenhouse gas emissions (GHG) in beef and dairy value chains and a substantial contributor to anthropogenic methane emissions globally. In late 2019, the World Wildlife Fund (WWF), the Advanced Research Projects Agency-Energy (ARPA-E) and the Foundation for Food and Agriculture Research (FFAR) convened approximately 50 stakeholders representing research and production of seaweeds, animal feeds, dairy cattle, and beef and dairy foods to discuss challenges and opportunities associated with the use of seaweed-based ingredients to reduce enteric methane emissions. This Perspective article describes the considerations identified by the workshop participants and suggests next steps for the further development and evaluation of seaweed-based feed ingredients as enteric methane mitigants. Although numerous compounds derived from sources other than seaweed have been identified as having enteric methane mitigation potential, these mitigants are outside the scope of this article.

6.
PLoS One ; 11(7): e0159818, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27467570

RESUMO

Experiments have demonstrated that ocean acidification (OA) conditions projected to occur by the end of the century will slow the calcification of numerous coral species and accelerate the biological erosion of reef habitats (bioerosion). Microborers, which bore holes less than 100 µm diameter, are one of the most pervasive agents of bioerosion and are present throughout all calcium carbonate substrates within the reef environment. The response of diverse reef functional groups to OA is known from real-world ecosystems, but to date our understanding of the relationship between ocean pH and carbonate dissolution by microborers is limited to controlled laboratory experiments. Here we examine the settlement of microborers to pure mineral calcium carbonate substrates (calcite) along a natural pH gradient at a volcanically acidified reef at Maug, Commonwealth of the Northern Mariana Islands (CNMI). Colonization of pioneer microborers was higher in the lower pH waters near the vent field. Depth of microborer penetration was highly variable both among and within sites (4.2-195.5 µm) over the short duration of the study (3 mo.) and no clear relationship to increasing CO2 was observed. Calculated rates of biogenic dissolution, however, were highest at the two sites closer to the vent and were not significantly different from each other. These data represent the first evidence of OA-enhancement of microboring flora colonization in newly available substrates and provide further evidence that microborers, especially bioeroding chlorophytes, respond positively to low pH. The accelerated breakdown and dissolution of reef framework structures with OA will likely lead to declines in structural complexity and integrity, as well as possible loss of essential habitat.


Assuntos
Ácidos/metabolismo , Recifes de Corais , Erupções Vulcânicas , Ecossistema , Concentração de Íons de Hidrogênio , Micronésia
7.
PLoS One ; 10(12): e0142196, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26641885

RESUMO

This paper presents a comprehensive quantitative baseline assessment of in situ net calcium carbonate accretion rates (g CaCO3 cm(-2) yr(-1)) of early successional recruitment communities on Calcification Accretion Unit (CAU) plates deployed on coral reefs at 78 discrete sites, across 11 islands in the central and south Pacific Oceans. Accretion rates varied substantially within and between islands, reef zones, levels of wave exposure, and island geomorphology. For forereef sites, mean accretion rates were the highest at Rose Atoll, Jarvis, and Swains Islands, and the lowest at Johnston Atoll and Tutuila. A comparison between reef zones showed higher accretion rates on forereefs compared to lagoon sites; mean accretion rates were also higher on windward than leeward sites but only for a subset of islands. High levels of spatial variability in net carbonate accretion rates reported herein draw attention to the heterogeneity of the community assemblages. Percent cover of key early successional taxa on CAU plates did not reflect that of the mature communities present on surrounding benthos, possibly due to the short deployment period (2 years) of the experimental units. Yet, net CaCO3 accretion rates were positively correlated with crustose coralline algae (CCA) percent cover on the surrounding benthos and on the CAU plates, which on average represented >70% of the accreted material. For foreeefs and lagoon sites combined CaCO3 accretion rates were statistically correlated with total alkalinity and Chlorophyll-a; a GAM analysis indicated that SiOH and Halimeda were the best predictor variables of accretion rates on lagoon sites, and total alkalinity and Chlorophyll-a for forereef sites, demonstrating the utility of CAUs as a tool to monitor changes in reef accretion rates as they relate to ocean acidification. This study underscores the pivotal role CCA play as a key benthic component and supporting actively calcifying reefs; high Mg-calcite exoskeletons makes CCA extremely susceptible changes in ocean water pH, emphasizing the far-reaching threat that ocean acidification poses to the ecological function and persistence of coral reefs worldwide.


Assuntos
Antozoários/metabolismo , Calcificação Fisiológica/fisiologia , Carbonato de Cálcio/metabolismo , Animais , Carbonatos/metabolismo , Clorofila/metabolismo , Clorofila A , Recifes de Corais , Ilhas , Oceano Pacífico , Água do Mar
8.
PeerJ ; 2: e411, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24918033

RESUMO

Despite the heightened awareness of ocean acidification (OA) effects on marine organisms, few studies empirically juxtapose biological responses to CO2 manipulations across functionally distinct primary producers, particularly benthic algae. Algal responses to OA may vary because increasing CO2 has the potential to fertilize photosynthesis but impair biomineralization. Using a series of repeated experiments on Palmyra Atoll, simulated OA effects were tested across a suite of ecologically important coral reef algae, including five fleshy and six calcareous species. Growth, calcification and photophysiology were measured for each species independently and metrics were combined from each experiment using a meta-analysis to examine overall trends across functional groups categorized as fleshy, upright calcareous, and crustose coralline algae (CCA). The magnitude of the effect of OA on algal growth response varied by species, but the direction was consistent within functional groups. Exposure to OA conditions generally enhanced growth in fleshy macroalgae, reduced net calcification in upright calcareous algae, and caused net dissolution in CCA. Additionally, three of the five fleshy seaweeds tested became reproductive upon exposure to OA conditions. There was no consistent effect of OA on algal photophysiology. Our study provides experimental evidence to support the hypothesis that OA will reduce the ability of calcareous algae to biomineralize. Further, we show that CO2 enrichment either will stimulate population or somatic growth in some species of fleshy macroalgae. Thus, our results suggest that projected OA conditions may favor non-calcifying algae and influence the relative dominance of fleshy macroalgae on reefs, perpetuating or exacerbating existing shifts in reef community structure.

9.
PLoS One ; 7(8): e43843, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22952785

RESUMO

Community structure and assembly are determined in part by environmental heterogeneity. While reef-building corals respond negatively to warming (i.e. bleaching events) and ocean acidification (OA), the extent of present-day natural variability in pH on shallow reefs and ecological consequences for benthic assemblages is unknown. We documented high resolution temporal patterns in temperature and pH from three reefs in the central Pacific and examined how these data relate to community development and net accretion rates of early successional benthic organisms. These reefs experienced substantial diel fluctuations in temperature (0.78°C) and pH (>0.2) similar to the magnitude of 'warming' and 'acidification' expected over the next century. Where daily pH within the benthic boundary layer failed to exceed pelagic climatological seasonal lows, net accretion was slower and fleshy, non-calcifying benthic organisms dominated space. Thus, key aspects of coral reef ecosystem structure and function are presently related to natural diurnal variability in pH.


Assuntos
Organismos Aquáticos/metabolismo , Calcificação Fisiológica , Recifes de Corais , Periodicidade , Água do Mar/química , Concentração de Íons de Hidrogênio , Ilhas , Temperatura , Fatores de Tempo
10.
PLoS One ; 6(12): e28983, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22205986

RESUMO

The effect of Ocean Acidification (OA) on marine biota is quasi-predictable at best. While perturbation studies, in the form of incubations under elevated pCO(2), reveal sensitivities and responses of individual species, one missing link in the OA story results from a chronic lack of pH data specific to a given species' natural habitat. Here, we present a compilation of continuous, high-resolution time series of upper ocean pH, collected using autonomous sensors, over a variety of ecosystems ranging from polar to tropical, open-ocean to coastal, kelp forest to coral reef. These observations reveal a continuum of month-long pH variability with standard deviations from 0.004 to 0.277 and ranges spanning 0.024 to 1.430 pH units. The nature of the observed variability was also highly site-dependent, with characteristic diel, semi-diurnal, and stochastic patterns of varying amplitudes. These biome-specific pH signatures disclose current levels of exposure to both high and low dissolved CO(2), often demonstrating that resident organisms are already experiencing pH regimes that are not predicted until 2100. Our data provide a first step toward crystallizing the biophysical link between environmental history of pH exposure and physiological resilience of marine organisms to fluctuations in seawater CO(2). Knowledge of this spatial and temporal variation in seawater chemistry allows us to improve the design of OA experiments: we can test organisms with a priori expectations of their tolerance guardrails, based on their natural range of exposure. Such hypothesis-testing will provide a deeper understanding of the effects of OA. Both intuitively simple to understand and powerfully informative, these and similar comparative time series can help guide management efforts to identify areas of marine habitat that can serve as refugia to acidification as well as areas that are particularly vulnerable to future ocean change.


Assuntos
Ecossistema , Água do Mar/química , Organismos Aquáticos , Concentração de Íons de Hidrogênio , Oceanos e Mares , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA