Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
J Am Chem Soc ; 145(41): 22494-22503, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37800477

RESUMO

Molecular self-assembly is a fundamental process in nature that can be used to develop novel functional materials for medical and engineering applications. However, their complex mechanisms make the short-lived stages of self-assembly processes extremely hard to reveal. In this article, we track the self-assembly process of a benchmark system, double-walled molecular nanotubes, whose structure is similar to that found in biological and synthetic systems. We selectively dissolved the outer wall of the double-walled system and used the inner wall as a template for the self-reassembly of the outer wall. The reassembly kinetics were followed in real time using a combination of microfluidics, spectroscopy, cryogenic transmission electron microscopy, molecular dynamics simulations, and exciton modeling. We found that the outer wall self-assembles through a transient disordered patchwork structure: first, several patches of different orientations are formed, and only on a longer time scale will the patches interact with each other and assume their final preferred global orientation. The understanding of patch formation and patch reorientation marks a crucial step toward steering self-assembly processes and subsequent material engineering.

2.
Phys Chem Chem Phys ; 24(22): 13763-13772, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35612289

RESUMO

In recent years, the dielectric constant (εr) of organic semiconductors (OSCs) has been of interest in the organic photovoltaic (OPV) community due to its potential influence on the exciton binding energy. Despite progress in the design of high εr OSCs and the accurate measurement of the εr, the effects of the synthetic strategies on specific (opto)electronic properties of the OSCs remain uncertain. In this contribution, the effects of εr on the optical properties of five new C70 derivatives and [70]PCBM are investigated. Together with [70]PCBM, the derivatives have a range of εr values that depend on the polarity and length of the side chains. The properties of the singlet excitons are investigated in detail with steady-state and time-resolved spectroscopy and the exciton diffusion length is measured. All six derivatives show similar photophysical properties in the neat films. However, large differences in the crystallinity of the fullerene films influence the exciton dynamics in blend films. This work shows that design principles for OSCs with a higher εr can have a very different influence on the performance of traditional BHJ devices and in neat films and it is important to consider the neat film properties when investigating the optoelectronic properties of new materials for OPV.

3.
Phys Chem Chem Phys ; 23(37): 20848-20853, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34546274

RESUMO

Single-material organic solar cells have recently attracted research attention due to their simplicity, morphological robustness and high yield of exciton dissociation. Using α-sexithiophene as a model system, we show that the single-event probability of the exciton dissociation at the boundaries of polycrystalline domains with different molecular orientation is extremely low (∼0.5%), while a high efficiency of charge generation is gained via hundred-fold crossings of the domain boundaries due to the long exciton diffusion length (∼45 nm).

4.
J Am Chem Soc ; 142(42): 18073-18085, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-32985187

RESUMO

Natural light-harvesting antennae employ a dense array of chromophores to optimize energy transport via the formation of delocalized excited states (excitons), which are critically sensitive to spatio-energetic variations of the molecular structure. Identifying the origin and impact of such variations is highly desirable for understanding and predicting functional properties yet hard to achieve due to averaging of many overlapping responses from individual systems. Here, we overcome this problem by measuring the heterogeneity of synthetic analogues of natural antennae-self-assembled molecular nanotubes-by two complementary approaches: single-nanotube photoluminescence spectroscopy and ultrafast 2D correlation. We demonstrate remarkable homogeneity of the nanotube ensemble and reveal that ultrafast (∼50 fs) modulation of the exciton frequencies governs spectral broadening. Using multiscale exciton modeling, we show that the dominance of homogeneous broadening at the exciton level results from exchange narrowing of strong static disorder found for individual molecules within the nanotube. The detailed characterization of static and dynamic disorder at the exciton as well as the molecular level presented here opens new avenues in analyzing and predicting dynamic exciton properties, such as excitation energy transport.

5.
Chemistry ; 26(69): 16422-16433, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-32701173

RESUMO

π-Conjugated push-pull molecules based on triphenylamine and 1,1,4,4-tetracyanobuta-1,3-diene (TCBD) have been functionalized with different terminal arene units. In solution, these highly TCBD-twisted systems showed a strong internal charge transfer band in the visible spectrum and no detectable photoluminescence (PL). Photophysical and theoretical investigations revealed very short singlet excited state deactivation time of ≈10 ps resulting from significant conformational changes of the TCBD-arene moiety upon photoexcitation, opening a pathway for non-radiative decay. The PL was recovered in vacuum-processed films or when the molecules were dispersed in a PMMA matrix leading to a significant increase of the excited state deactivation time. As shown by cyclic voltammetry, these molecules can act as electron donors compared to C60 . Hence, vacuum-processed planar heterojunction organic solar cells were fabricated leading to a maximum power conversion efficiency of ca. 1.9 % which decreases with the increase of the arene size.

6.
Phys Chem Chem Phys ; 22(18): 10179-10188, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32347288

RESUMO

The bottom-up fabrication of functional nanosystems for light-harvesting applications and excitonic devices often relies on molecular self-assembly. Gaining access to the intermediate species involved in self-assembly would provide valuable insights into the pathways via which the final architecture has evolved, yet difficult to achieve due to their intrinsically short-lived nature. Here, we employ a lab-on-a-chip approach as a means to obtain in situ control of the structural complexity of an artificial light-harvesting complex: molecular double-walled nanotubes. Rapid and stable dissolution of the outer wall was realized via microfluidic mixing thereby rendering the thermodynamically unstable inner tubes accessible to spectroscopy. By measurement of the linear dichroism and time-resolved photoluminescence of both double-walled nanotubes and isolated inner tubes we show that the optical (excitonic) properties of the inner tube are remarkably robust to such drastic perturbation of the system's supramolecular structure as removal of the outer wall. The developed platform is readily extendable to a broad range of practical applications such as e.g. self-assembling systems and molecular photonics devices.

7.
J Phys Chem A ; 122(9): 2468-2478, 2018 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-29425450

RESUMO

Aqueous N-methylacetamide solutions were investigated by polarization-resolved pump-probe and 2D infrared spectroscopy (2D IR), using the amide I mode as a reporter. The 2D IR results are compared with molecular dynamics simulations and spectral calculations to gain insight into the molecular structures in the mixture. N-Methylacetamide and water molecules tend to form clusters with "frozen" amide I dynamics. This is driven by a hydrophobic collapse as the methyl groups of the N-methylacetamide molecules cluster in the presence of water. Since the studied system can be considered as a simplified model for the backbone of proteins, the present study forms a convenient basis for understanding the structural and vibrational dynamics in proteins. It is particularly interesting to find out that a hydrophobic collapse as the one driving protein folding is observed in such a simple system.


Assuntos
Acetamidas/química , Interações Hidrofóbicas e Hidrofílicas , Água/química , Ligação de Hidrogênio , Conformação Molecular , Simulação de Dinâmica Molecular , Espectrofotometria Infravermelho
8.
Phys Chem Chem Phys ; 19(41): 27960-27967, 2017 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-28848947

RESUMO

Hydrogen-bonding plays a crucial role in many chemical and biochemical reactions. Alcohols, with their hydrophilic and hydrophobic groups, constitute an important class of hydrogen-bonding molecules with functional tuning possibilities through changes in the hydrophobic tails. Recent studies demonstrated that for solutions of alcohols changes in the hydrophobic tail significantly affect a broad range of dynamics properties of the liquid. Still, the understanding is lacking on the origin of such differences in terms of a solvent- versus a solute-dominated effect. Here we reveal this origin by studying hydrogen-bond dynamics in a number of alcohol molecules - from methanol to butanol - diluted in a hydrogen-bond accepting environment, acetonitrile. The dynamics were investigated by pump-probe and 2D infrared spectroscopy combined with molecular dynamics-spectral simulations, using the OH stretching mode as a reporter. For all the considered alcohols, the vibrational lifetime of the OH stretching mode was found to be ∼3 ps. The hydrogen-bond dynamics exhibit similar behavior with a fast (∼200 fs) initial relaxation dominated by librational motion and a slow (∼4 ps) relaxation due to hydrogen-bond exchange dynamics. The similar dynamics over such a broad range of alcohols led us to conclude that the previously observed differences in dynamics in bulk alcohols originate from the dependence of the solvent properties on the hydrophobic tail, while the solute properties as found herein are essentially independent of the hydrophobic tail.

9.
Phys Rev Lett ; 116(5): 057402, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26894732

RESUMO

Exciton diffusion in organic materials provides the operational basis for functioning of such devices as organic solar cells and light-emitting diodes. Here we track the exciton diffusion process in organic semiconductors in real time with a novel technique based on femtosecond photoinduced absorption spectroscopy. Using vacuum-deposited C_{70} layers as a model system, we demonstrate an extremely high diffusion coefficient of D≈3.5×10^{-3} cm^{2}/s that originates from a surprisingly low energetic disorder of <5 meV. The experimental results are well described by the analytical model and supported by extensive Monte Carlo simulations. The proposed noninvasive time-of-flight technique is deemed as a powerful tool for further development of organic optoelectronic components, such as simple layered solar cells, light-emitting diodes, and electrically pumped lasers.

10.
J Chem Phys ; 142(21): 212450, 2015 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-26049470

RESUMO

Hydrogen-bonded liquids play a significant role in numerous chemical and biological phenomena. In the past decade, impressive developments in multidimensional vibrational spectroscopy and combined molecular dynamics-quantum mechanical simulation have established many intriguing features of hydrogen bond dynamics in one of the fundamental solvents in nature, water. The next class of a hydrogen-bonded liquid--alcohols--has attracted much less attention. This is surprising given such important differences between water and alcohols as the imbalance between the number of hydrogen bonds, each molecule can accept (two) and donate (one) and the very presence of the hydrophobic group in alcohols. Here, we use polarization-resolved pump-probe and 2D infrared spectroscopy supported by extensive theoretical modeling to investigate hydrogen bond dynamics in methanol, ethanol, and isopropanol employing the OH stretching mode as a reporter. The sub-ps dynamics in alcohols are similar to those in water as they are determined by similar librational and hydrogen-bond stretch motions. However, lower density of hydrogen bond acceptors and donors in alcohols leads to the appearance of slow diffusion-controlled hydrogen bond exchange dynamics, which are essentially absent in water. We anticipate that the findings herein would have a potential impact on fundamental chemistry and biology as many processes in nature involve the interplay of hydrophobic and hydrophilic groups.


Assuntos
Álcoois/química , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Teoria Quântica , Espectrofotometria Infravermelho
11.
Sci Adv ; 8(44): eadd0410, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36332022

RESUMO

Molecular machines have caused one of the greatest paradigm shifts in chemistry, and by powering artificial mechanical molecular systems and enabling autonomous motion, they are expected to be at the heart of exciting new technologies. One of the biggest challenges that still needs to be addressed is designing the involved molecules to combine different orthogonally controllable functions. Here, we present a prototype of artificial molecular motors exhibiting the dual function of rotary motion and photoluminescence. Both properties are controlled by light of different wavelengths or by exploiting motors' outstanding two-photon absorption properties using low-intensity near-infrared light. This provides a noninvasive way to both locate and operate these motors in situ, essential for the application of molecular machines in complex (bio)environments.

12.
Sci Rep ; 12(1): 5552, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35365716

RESUMO

The energy transport in natural light-harvesting complexes can be explored in laboratory conditions via self-assembled supramolecular structures. One such structure arises from the amphiphilic dye C8S3 molecules, which self-assemble in an aqueous medium to a double-wall cylindrical nanotube reminiscent of natural light-harvesting complexes found in green sulphur bacteria. In this paper, we report a way to investigate the structure of inner nanotubes (NTs) alone by dissolving the outer NTs in a microfluidic setting. The resulting thermodynamically unstable system was rapidly frozen, preventing the reassembly of the outer NT from the dissolved molecules, and imaged using cryogenic transmission electron microscopy (cryo-TEM). The experimental cryo-TEM images and the molecular structure were compared by simulating high-resolution TEM images, which were based on the molecular modelling of C8S3 NTs. We found that the inner NT with outer walls removed during the flash-dilution process had a similar size to the parent double-walled NTs. Moreover, no structural inhomogeneity was observed in the inner NT after flash-dilution. This opens up exciting possibilities for functionalisation of inner NTs before the reassembly of the outer NT occurs, which can be broadly extended to modify the intra-architecture of other self-assembled nanostructures.


Assuntos
Nanoestruturas , Nanotubos , Microfluídica , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Nanotubos/química
13.
Nat Commun ; 13(1): 5765, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36180434

RESUMO

Photoactuators and photoluminescent dyes utilize light to perform mechanical motion and undergo spontaneous radiation emission, respectively. Combining these two functionalities in a single molecule would benefit the construction of advanced molecular machines. Due to the possible detrimental interaction between the two light-dependent functional parts, the design of hybrid systems featuring both functions in parallel remains highly challenging. Here, we develop a light-driven rotary molecular motor with an efficient photoluminescent dye chemically attached to the motor, not compromising its motor function. This molecular system shows efficient rotary motion and bright photoluminescence, and these functions can be addressed by a proper choice of excitation wavelengths and solvents. The moderate interaction between the two parts generates synergistic effects, which are beneficial for lower-energy excitation and chirality transfer from the motor to the photoluminescent dye. Our results provide prospects towards photoactive multifunctional systems capable of carrying out molecular rotary motion and tracking its location in a complex environment.


Assuntos
Corantes , Nanotecnologia , Movimento (Física) , Solventes
14.
Phys Chem Chem Phys ; 13(43): 19355-61, 2011 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-21959913

RESUMO

We report on vibrational dynamics of water near the surface of AOT reverse micelles studied by narrow-band excitation, mid-IR pump-probe spectroscopy. Evidence of OH-stretch frequency splitting into the symmetric and asymmetric modes is clearly observed for the interfacial H(2)O molecules. The polarization memory of interfacial waters is preserved over an exceptionally extended >10 ps timescale which is a factor of 100 longer than in bulk water. These observations point towards negligibly small intermolecular vibrational coupling between the water molecules as well as strongly reduced water rotational mobility within the interfacial water layer.


Assuntos
Micelas , Água/química , Modelos Moleculares , Espectrofotometria Infravermelho , Propriedades de Superfície , Vibração
15.
J Phys Chem A ; 115(10): 1821-9, 2011 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-21214234

RESUMO

We study the spectral and orientational dynamics of HDO molecules in solutions of tertiary-butyl-alcohol (TBA), trimethyl-amine-oxide (TMAO), and tetramethylurea (TMU) in isotopically diluted water (HDO:D(2)O and HDO:H(2)O). The spectral dynamics are studied with femtosecond two-dimensional infrared spectroscopy and the orientational dynamics with femtosecond polarization-resolved vibrational pump-probe spectroscopy. We observe a strong slowing down of the spectral diffusion around the central part of the absorption line that increases with increasing solute concentration. At low concentrations, the fraction of water showing slow spectral dynamics is observed to scale with the number of methyl groups, indicating that this effect is due to slow hydrogen-bond dynamics in the hydration shell of the methyl groups of the solute molecules. The slowing down of the vibrational frequency dynamics is strongly correlated with the slowing down of the orientational mobility of the water molecules. This correlation indicates that these effects have a common origin in the effect of hydrophobic molecular groups on the hydrogen-bond dynamics of water.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Água/química , Ligação de Hidrogênio , Modelos Moleculares , Conformação Molecular , Análise Espectral , Vibração
16.
Acc Chem Res ; 42(9): 1229-38, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19681584

RESUMO

For decades, the enigma of the hydrophobic force has captured the imagination of scientists. In particular, Frank and Evans' idea that the hydrophobic effect was mainly due to some kind of "iceberg" formation around a hydrophobic solute stimulated many experiments and molecular dynamics simulation studies. A better understanding of hydrophobic interactions will aid understanding in many contexts including protein structural dynamics and functioning in biological systems. In this Account, we present results of two-dimensional infrared (2D IR) spectroscopy experiments on the OH-stretch vibrational mode of water molecules near hydrophobic groups in concentrated solutions with tetramethylurea (TMU). The frequency of the OH vibration is a sensitive probe for environmental dynamics and, in particular, for the strength of the hydrogen bond. Two-dimensional IR spectroscopy can trace time correlations of the vibrational frequency at the scale of hundreds of femtoseconds and thus provides valuable insight into the effect of hydrophobic solutes on the dynamics of a hydrogen-bond network. We compare the 2D spectroscopic results with molecular dynamics (MD) simulations to obtain a microscopic picture of hydrophobic solvation. We observe two different types of hydrogen-bond dynamics in the water/TMU mixtures. We attribute the "fast" ( approximately 100 fs) dynamics to highly coordinated water molecular-jump reorientations and assigned the "slow" (>1 ps) dynamics to water translational motions that are strongly suppressed by the TMU molecules. Molecular dynamics simulations demonstrate a clear correlation between the slowed dynamics and the translational mobility of water. This finding indicates that the molecular-jump reorientations are switched off near hydrophobic groups. The fifth water molecule, which is required to form a defect state in the tetrahedral surroundings, cannot approach the hydrogen-bonded pair to initiate the molecular jump. As a result, the rate of the jumping events sharply decreases, which, in turn, strongly slows the rotation of the water molecules. Our findings suggest that water molecules in the hydrophobic solvation shell do not exhibit an increased tetrahedral ordering compared with the bulk but that the hydrogen-bond dynamics in the two cases are different. This result also indicates that consideration of a hydrogen bond's dynamics could be critical for its definition.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Solventes/química , Absorção , Anisotropia , Hidróxidos/química , Modelos Lineares , Compostos de Metilureia/química , Modelos Moleculares , Conformação Molecular , Movimento (Física) , Espectrofotometria Infravermelho , Fatores de Tempo , Água/química
17.
J Chem Phys ; 133(16): 164514, 2010 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-21033812

RESUMO

We study the spectral and orientational dynamics of HDO molecules in aqueous solutions of different concentrations of tertiary butyl alcohol (TBA) and trimethylamine-N-oxide (TMAO). The spectral dynamics is investigated with femtosecond two-dimensional infrared spectroscopy of the O-H stretch vibration of HDO:D(2)O, and the orientational dynamics is studied with femtosecond polarization-resolved pump-probe spectroscopy of the O-D stretch vibration of HDO:H(2)O. Both the spectral and orientational dynamics are observed to show bimodal behavior: part of the water molecules shows spectral and orientational dynamics similar to bulk liquid water and part of the water molecules displays a much slower dynamics. For low solute concentrations, the latter fraction of slow water increases linearly as a function of solute molality, indicating that the slow water is contained in the solvation shells of TBA and TMAO. At higher concentrations, the fraction of slow water saturates. The saturation behavior is much stronger for TBA solutions than for TMAO solutions, indicating the aggregation of the TBA molecules.

18.
Sci Adv ; 6(44)2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33115739

RESUMO

Light-controlled artificial molecular machines hold tremendous potential to revolutionize molecular sciences as autonomous motion allows the design of smart materials and systems whose properties can respond, adapt, and be modified on command. One long-standing challenge toward future applicability has been the need to develop methods using low-energy, low-intensity, near-infrared light to power these nanomachines. Here, we describe a rotary molecular motor sensitized by a two-photon absorber, which efficiently operates under near-infrared light at intensities and wavelengths compatible with in vivo studies. Time-resolved spectroscopy was used to gain insight into the mechanism of energy transfer to the motor following initial two-photon excitation. Our results offer prospects toward in vitro and in vivo applications of artificial molecular motors.

19.
Sci Rep ; 10(1): 21198, 2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33273567

RESUMO

Triphenylamine-based small push-pull molecules have recently attracted substantial research attention due to their unique optoelectronic properties. Here, we investigate the excited state de-excitation dynamics and exciton diffusion in TPA-T-DCV-Ph-F small molecule, having simple chemical structure with asymmetrical architecture and end-capped with electron-withdrawing p-fluorodicyanovinyl group. The excited state lifetime in diluted solutions (0.04 ns in toluene and 0.4 ns in chloroform) are found to be surprisingly shorter compared to the solid state (3 ns in PMMA matrix). Time-dependent density functional theory indicates that this behavior originates from non-radiative relaxation of the excited state through a conical intersection between the ground and singlet excited state potential energy surfaces. Exciton diffusion length of ~ 16 nm in solution processed films was retrieved by employing time-resolved photoluminescence volume quenching measurements with Monte Carlo simulations. As means of investigating the device performance of TPA-T-DCV-Ph-F, we manufactured solution and vacuum processed bulk heterojunction solar cells that yielded efficiencies of ~ 1.5% and ~ 3.7%, respectively. Our findings demonstrate that the short lifetime in solutions does not hinder per se long exciton diffusion length in films thereby granting applications of TPA-T-DCV-Ph-F and similar push-pull molecules in vacuum and solution processable devices.

20.
J Phys Chem A ; 113(22): 6260-5, 2009 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-19438222

RESUMO

Dissimilar dynamics of coupled stretch vibrations of a water molecule are revealed by two-dimensional IR correlation spectroscopy. These are caused by essentially non-Gaussian fluctuations of the electric field exerted by the environment on the individual OH stretch vibrations. Non-Gaussian statistics of the individual site frequency fluctuations results in distinctively different dephasing of the symmetric and asymmetric eigenmodes. This phenomenon can only be described if the assumption of Gaussian dynamics in the traditional theories is abandoned.


Assuntos
Vibração , Água/química , Absorção , Elétrons , Ligação de Hidrogênio , Hidróxidos/química , Modelos Moleculares , Teoria Quântica , Espectroscopia de Infravermelho com Transformada de Fourier , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA