Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Pineal Res ; 74(4): e12859, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36732085

RESUMO

Cervical spondylotic myelopathy (CSM) refers to a chronic injury of the cervical cord caused by cervical intervertebral disc degeneration. Endoplasmic reticulum (ER) homeostasis is essential to counteract neuronal apoptosis. ER stress, an integral part of ER homeostasis, was observed in a rat model of chronic cervical cord compression in our previous study. However, the correlation between ER homeostasis and CSM remains unknown. The antioxidant melatonin is known to exert therapeutic effects in acute spinal cord injury, but the specific effects and their potential mechanisms in the pathological processes of CSM require further exploration. The present study hypothesized that ER homeostasis is essential for neuronal apoptosis in the CSM and that melatonin maintains this homeostasis. The results showed that ER stress led to neuronal apoptosis in rats with chronic cervical cord compression. Conversely, melatonin attenuates protein kinase R-like ER kinase-eukaryotic initiation factor 2α-C/EBP-homologous protein, inositol-requiring enzyme 1, and transcription factor 6 signaling pathways to release ER stress and prevents Bax translocation to the mitochondrion, thereby promoting motor recovery and protecting neurons in vivo. It also rescued primary rat cortical neurons from ER stress-induced glutamate toxicity in vitro. Moreover, melatonin remodels the ER morphology and restores homeostasis via ER-phagy in injured neurons. FAM134B, CCPG1, RTN3, and Sec. 62 are four known ER-phagy receptors. In this study, Sec. 62 was identified as a key melatonin factor in promoting ER-phagy and restoring ER homeostasis in damaged neurons in vivo and in vitro. In conclusion, melatonin suppresses neuronal apoptosis by reducing ER stress and promoting ER-phagy to restore ER morphology and homeostasis. The current results suggested that melatonin is a promising treatment for CSM owing to its restorative effect on ER homeostasis; however, well-designed randomized controlled trials must be carried out to further investigate its clinical effects.


Assuntos
Medula Cervical , Melatonina , Ratos , Animais , Melatonina/farmacologia , Melatonina/metabolismo , Estresse do Retículo Endoplasmático , Apoptose , Neurônios/metabolismo , Retículo Endoplasmático/metabolismo , Homeostase
2.
BMC Genomics ; 16: 188, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25879893

RESUMO

BACKGROUND: Comparative genomics provides insights into the diversification of bacterial species. Bacterial speciation usually takes place with lasting homologous recombination, which not only acts as a cohering force between diverging lineages but brings advantageous alleles favored by natural selection, and results in ecologically distinct species, e.g., frequent host shift in Xanthomonas pathogenic to various plants. RESULTS: Using whole-genome sequences, we examined the genetic divergence in Xanthomonas campestris that infected Brassicaceae, and X. citri, pathogenic to a wider host range. Genetic differentiation between two incipient races of X. citri pv. mangiferaeindicae was attributable to a DNA fragment introduced by phages. In contrast to most portions of the genome that had nearly equivalent levels of genetic divergence between subspecies as a result of the accumulation of point mutations, 10% of the core genome involving with homologous recombination contributed to the diversification in Xanthomonas, as revealed by the correlation between homologous recombination and genomic divergence. Interestingly, 179 genes were under positive selection; 98 (54.7%) of these genes were involved in homologous recombination, indicating that foreign genetic fragments may have caused the adaptive diversification, especially in lineages with nutritional transitions. Homologous recombination may have provided genetic materials for the natural selection, and host shifts likely triggered ecological adaptation in Xanthomonas. To a certain extent, we observed positive selection nevertheless contributed to ecological divergence beyond host shifting. CONCLUSION: Altogether, mediated with lasting gene flow, species formation in Xanthomonas was likely governed by natural selection that played a key role in helping the deviating populations to explore novel niches (hosts) or respond to environmental cues, subsequently triggering species diversification.


Assuntos
Adaptação Fisiológica/genética , Genoma Bacteriano , Genômica , Recombinação Homóloga/genética , Xanthomonas/genética , Proteínas de Bactérias/genética , Fenômenos Ecológicos e Ambientais , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Análise de Sequência de DNA , Xanthomonas/classificação
3.
Mol Cancer ; 13: 63, 2014 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-24650032

RESUMO

BACKGROUND: Epidermal growth factor receptor (EGFR) is amplified in 40% of human glioblastomas. However, most glioblastoma patients respond poorly to anti-EGFR therapy. MicroRNAs can function as either oncogenes or tumor suppressor genes, and have been shown to play an important role in cancer cell proliferation, invasion and apoptosis. Whether microRNAs can impact the therapeutic effects of EGFR inhibitors in glioblastoma is unknown. METHODS: miR-566 expression levels were detected in glioma cell lines, using real-time quantitative RT-PCR (qRT-PCR). Luciferase reporter assays and Western blots were used to validate VHL as a direct target gene of miR-566. Cell proliferation, invasion, cell cycle distribution and apoptosis were also examined to confirm whether miR-566 inhibition could sensitize anti-EGFR therapy. RESULTS: In this study, we demonstrated that miR-566 is up-regulated in human glioma cell lines and inhibition of miR-566 decreased the activity of the EGFR pathway. Lentiviral mediated inhibition of miR-566 in glioblastoma cell lines significantly inhibited cell proliferation and invasion and led to cell cycle arrest in the G0/G1 phase. In addition, we identified von Hippel-Lindau (VHL) as a novel functional target of miR-566. VHL regulates the formation of the ß-catenin/hypoxia-inducible factors-1α complex under miR-566 regulation. CONCLUSIONS: miR-566 activated EGFR signaling and its inhibition sensitized glioblastoma cells to anti-EGFR therapy.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Antineoplásicos/farmacologia , Receptores ErbB/genética , Glioblastoma/genética , MicroRNAs/genética , Transdução de Sinais , Animais , Western Blotting , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Imunofluorescência , Glioblastoma/metabolismo , Xenoenxertos , Humanos , Immunoblotting , Imunoprecipitação , Camundongos , Camundongos Nus , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/genética , Transfecção , Proteína Supressora de Tumor Von Hippel-Lindau/genética
4.
Int J Oncol ; 64(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38063241

RESUMO

Following the publication of the above article, a concerned reader drew to the Editor's attention that, regarding the western blots featured in Fig. 3B on p. 670, the bands featured in the U251 and U251­MC lanes for the miR­21 and U6 experiments appeared to be duplicates of each other. Moreover, certain of these data were strikingly similar to data that appeared in another article published at around the same time featuring some of the same authors (again, with apparent duplications of bands within the same gel slices, as they were presented). After having conducted an internal investigation of this matter, the Editor of International Journal of Oncology has judged that the apparently anomalous grouping of the data could not have been attributed to pure coincidence. Therefore, the Editor has decided that this article should be retracted from the publication on the grounds of an overall lack of confidence in the data. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor sincerely apologizes to the readership for any incovenience caused, and we thank the reader for bringing this matter to our attention. [International Journal of Oncology 36: 665­672, 2010; DOI: 10.3892/ijo_00000542].

5.
Phytomedicine ; 126: 155073, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417244

RESUMO

BACKGROUND: Cervical spondylotic myelopathy (CSM) is a degenerative pathology that affects both upper and lower extremity mobility and sensory function, causing significant pressure on patients and society. Prior research has suggested that ginsenosides may have neuroprotective properties in central nervous system diseases. However, the efficacy and mechanism of ginsenosides for CSM have yet to be investigated. PURPOSE: This study aims to analyze the composition of ginsenosides using UPLC-MS, identify the underlying mechanism of ginsenosides in treating CSM using network pharmacology, and subsequently confirm the efficacy and mechanism of ginsenosides in rats with chronic spinal cord compression. METHODS: UPLC-Q-TOF-MS was utilized to obtain mass spectrum data of ginsenoside samples. The chemical constituents of the samples were analyzed by consulting literature reports and relevant databases. Ginsenoside and CSM targets were obtained from the TCMSP, OMIM, and GeneCards databases. GO and KEGG analyses were conducted, and a visualization network of ginsenosides-compounds-key targets-pathways-CSM was constructed, along with molecular docking of key bioactive compounds and targets, to identify the signaling pathways and proteins associated with the therapeutic effects of ginsenosides on CSM. Chronic spinal cord compression rats were intraperitoneally injected with ginsenosides (50 mg/kg and 150 mg/kg) and methylprednisolone for 28 days, and motor function was assessed to investigate the therapeutic efficacy of ginsenosides for CSM. The expression of proteins associated with TNF, IL-17, TLR4/MyD88/NF-κB, and NLRP3 signaling pathways was assessed by immunofluorescence staining and western blotting. RESULTS: Using UPLC-Q-TOF-MS, 37 compounds were identified from ginsenoside samples. Furthermore, ginsenosides-compounds-key targets-pathways-CSM visualization network indicated that ginsenosides may modulate the PI3K-Akt signaling pathway, TNF signaling pathway, MAPK signaling pathway, IL-17 signaling pathway, Toll-like receptor signaling pathway and Apoptosis by targeting AKT1, TNF, MAPK1, CASP3, IL6, and IL1B, exerting a therapeutic effect on CSM. By attenuating neuroinflammation through the TNF, IL-17, TLR4/MyD88/NF-κB, and MAPK signaling pathways, ginsenosides restored the motor function of rats with CSM, and ginsenosides 150 mg/kg showed better effect. This was achieved by reducing the phosphorylation of NF-κB and the activation of the NLRP3 inflammasome. CONCLUSIONS: The results of network pharmacology indicate that ginsenosides can inhibit neuroinflammation resulting from spinal cord compression through multiple pathways and targets. This finding was validated through in vivo tests, which demonstrated that ginsenosides can reduce neuroinflammation by inhibiting NLRP3 inflammasomes via multiple signaling pathways, additionally, it should be noted that 150 mg/kg was a relatively superior dose. This study is the first to verify the intrinsic molecular mechanism of ginsenosides in treating CSM by combining pharmacokinetics, network pharmacology, and animal experiments. The findings can provide evidence for subsequent clinical research and drug development.


Assuntos
Experimentação Animal , Medicamentos de Ervas Chinesas , Ginsenosídeos , Compressão da Medula Espinal , Doenças da Medula Espinal , Humanos , Animais , Ratos , Ginsenosídeos/farmacologia , Interleucina-17 , Proteína 3 que Contém Domínio de Pirina da Família NLR , NF-kappa B , Cromatografia Líquida , Simulação de Acoplamento Molecular , Fator 88 de Diferenciação Mieloide , Farmacologia em Rede , Doenças Neuroinflamatórias , Fosfatidilinositol 3-Quinases , Receptor 4 Toll-Like , Espectrometria de Massas em Tandem , Medicamentos de Ervas Chinesas/farmacologia
6.
Cell Signal ; 115: 111041, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38199598

RESUMO

Pin1, a peptide prolyl cis-trans isomerase, is overexpressed and/or overactivated in many human malignancies. However, whether Pin1 regulates the immunosuppressive TME has not been well defined. In this study, we detected the effect of Pin1 on immune cells and immune checkpoint PD-L1 in the TME of CRC and explored the anti-tumor efficacy of Pin1 inhibitor ATRA combined with PD-1 antibody. We found that Pin1 facilitated the immunosuppressive TME by raising the proportion of myeloid-derived suppressor cells (MDSCs) and declining the percentage of CD8+ T cells and CD4+ T cells. Pin1 restrained PD-L1 protein expression in CRC cells and the effect was tempered by endoplasmic reticulum (ER) stress inducers. Mechanically, Pin1 overexpression decreased the stability of PD-L1 and promoted its degradation by mitigating ER stress. Silencing or inhibiting Pin1 promoted PD-L1 protein expression by inducing ER stress. Hence, Pin1 inhibitor ATRA enhanced the anti-tumor efficacy of PD-1 antibody in the CRC allograft by upregulating PD-L1. Our results reveal the critical and pleiotropic effects of Pin1 on managing the immune cells and immune checkpoint PD-L1 in the TME of CRC, providing a new promising candidate for combination with immunotherapy.


Assuntos
Antígeno B7-H1 , Neoplasias Colorretais , Humanos , Peptidilprolil Isomerase , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/patologia , Receptor de Morte Celular Programada 1/metabolismo , Neoplasias Colorretais/patologia , Microambiente Tumoral
7.
Foods ; 12(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37569182

RESUMO

ß-lactoglobulin (ß-LG) is a pivotal nutritional and functional protein. However, its application is limited by its antigenicity and susceptibility to oxidation. Here, we explore the impact of covalent modification by six natural compounds on the antigenicity and antioxidant characteristics of ß-LG to explore the underlying interaction mechanism. Our findings reveal that the covalent interaction of ß-LG and flavonoids reduces the antigenicity of ß-LG, with the following inhibition rates: epigallocatechin-3-gallate (EGCG) (57.0%), kaempferol (42.4%), myricetin (33.7%), phloretin (28.6%), naringenin (26.7%), and quercetin (24.3%). Additionally, the ß-LG-flavonoid conjugates exhibited superior antioxidant capacity compared to natural ß-LG. Our results demonstrate that the significant structural modifications from α-helix to ß-sheet induced by flavonoid conjugation elicited distinct variations in the antigenicity and antioxidant activity of ß-LG. Therefore, the conjugation of ß-LG with flavonoids presents a prospective method to reduce the antigenicity and enhance the antioxidant capacity of ß-LG.

8.
Neurochem Int ; 168: 105564, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37286109

RESUMO

Cervical spondylotic myelopathy (CSM) is a severe non-traumatic spinal cord injury (SCI) wherein the spinal canal and cervical cord are compressed due to the degeneration of cervical tissues. To explore the mechanism of CSM, the ideal model of chronic cervical cord compression in rats was constructed by embedding a polyvinyl alcohol-polyacrylamide hydrogel in lamina space. Then, the RNA sequencing technology was used to screen the differentially expressed genes (DEGs) and enriched pathways among intact and compressed spinal cords. A total of 444 DEGs were filtered out based on the value of log2(Compression/Sham); these were associated with IL-17, PI3K-AKT, TGF-ß, and Hippo signaling pathways according to the GSEA, KEGG, and GO analyses. Transmission electron microscopy indicated the changes in mitochondrial morphology. Western blot and immunofluorescence staining revealed neuronal apoptosis, astrogliosis and microglial neuroinflammation in the lesion area. Specifically, the expression of apoptotic indicators, such as Bax and cleaved caspase-3, and inflammatory cytokines, such as IL-1ß, IL-6, and TNF-α, were upregulated. The activation of IL-17 signaling pathway was observed in microglia instead of neurons or astrocytes, the activation of TGF-ß and inhibition of Hippo signaling pathways were detected in astrocytes instead of neurons or microglia, and the inhibition of PI3K-AKT signaling pathway was discovered in neurons rather than microglia of astrocytes in the lesion area. In conclusion, this study indicated that neuronal apoptosis was accompanied by inhibiting of the PI3K-AKT pathway. Then, the activation of microglia IL-17 pathway and NLRP3 inflammasome effectuated the neuroinflammation, and astrogliosis was ascribed to the activation of TGF-ß and the inhibition of the Hippo pathway in the chronic cervical cord of compression. Therefore, therapeutic methods targeting these pathways in nerve cells could be promising CSM treatments.


Assuntos
Medula Cervical , Compressão da Medula Espinal , Doenças da Medula Espinal , Traumatismos da Medula Espinal , Ratos , Animais , Interleucina-17/metabolismo , Interleucina-17/uso terapêutico , Medula Cervical/patologia , Gliose/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Doenças Neuroinflamatórias , Transcriptoma , Fosfatidilinositol 3-Quinases/metabolismo , Compressão da Medula Espinal/patologia , Doenças da Medula Espinal/complicações , Medula Espinal/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Traumatismos da Medula Espinal/metabolismo
9.
Neural Regen Res ; 18(3): 634-642, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36018188

RESUMO

Chronic spinal cord compression (CSCC) is induced by disc herniation and other reasons, leading to movement and sensation dysfunction, with a serious impact on quality of life. Spontaneous disc herniation rarely occurs in rodents, and therefore establishing a chronic spinal cord compression (CSCC) animal model is of crucial importance to explore the pathogenesis and treatment of CSCC. The absence of secreted protein, acidic, and rich in cysteine (SPARC) leads to spontaneous intervertebral disc degeneration in mice, which resembles human disc degeneration. In this study, we evaluated whether SPARC-null mice may serve as an animal model for CSCC. We performed rod rotation test, pain threshold test, gait analysis, and Basso Mouse Scale score. Our results showed that the motor function of SPARC-null mice was weakened, and magnetic resonance images revealed compression at different spinal cord levels, particularly in the lumbar segments. Immunofluorescence staining and western blot assay showed that the absence of SPARC induced apoptosis of neurons and oligodendrocytes, activation of microglia/macrophages with M1/M2 phenotype and astrocytes with A1/A2 phenotype; it also activated the expression of the NOD-like receptor protein 3 inflammasome and inhibited brain-derived neurotrophic factor/tyrosine kinase B signaling pathway. Notably, these findings are characteristics of CSCC. Therefore, we propose that SPARC-null mice may be an animal model for studying CSCC caused by disc herniation.

10.
Zhonghua Wai Ke Za Zhi ; 50(11): 1015-20, 2012 Nov.
Artigo em Zh | MEDLINE | ID: mdl-23302488

RESUMO

OBJECTIVES: To study the different expression of miRNA between pediatric and adult types of brainstem gliomas, and to provide the target miRNAs for explore the mechanism and miRNA interference of the malignant progression of pediatric BSG. METHODS: miRNA expression profiles in orthotopic models which could simulate the BSG heterogeneity were examined by microarray and analyzed to obtain the aberrantly expressed miRNAs. The two types of human BSG tissue were utilized to verify the microarray data by qRT-PCR and in situ hybridization for the putative causative miRNAs. RESULTS: There were 216 miRNAs detected in both the pediatric BSG group and the adult BSG group, 39 miRNAs to be differential expressed in the pediatric BSG group versus adult group, including 10 up-regulated and 29 down-regulated. qRT-PCR and in situ hybridization indicated good consistency with that of the microarray method. CONCLUSIONS: Aberrantly expressed miRNA may serve as putative causative involvement of malignant progression of pediatric BSG, thereby might be potentially novel targets for therapy.


Assuntos
Neoplasias do Tronco Encefálico/metabolismo , Glioma/metabolismo , MicroRNAs/metabolismo , Adulto , Fatores Etários , Animais , Tronco Encefálico , Criança , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Humanos , Hibridização In Situ , Análise de Sequência com Séries de Oligonucleotídeos , Ratos
11.
Food Chem ; 393: 133333, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35661607

RESUMO

In this study, through a combined simulated enzymolysis-molecular docking-molecular simulation-activity determination-action mechanism strategy, we screened a ß-LG-derived peptide (VAGTWYSL) to inhibit the antigenicity of ß-LG and explored its mechanism of action. Our results indicate that the inhibitory effect of the peptide on the antigenicity of ß-LG is affected by different experimental conditions, including pH, reaction time and concentration. Three factors may contribute to the reduced allergenicity of ß-LG. First, there must be sufficient forces between the peptide and ß-LG, as a result, hydrophobic forces and hydrogen bonds are the main forces to maintain the structural stability of the complex. Second, the binding of the peptide changes the secondary structure of ß-LG, especially with an increase in α-helices and a decrease in ß-turns. Third, the peptide binds to the hydrophobic region of ß-LG, involving the antigenic epitope region Val41-Lys60, which may reduce the antigenicity.


Assuntos
Alérgenos , Lactoglobulinas , Lactoglobulinas/química , Simulação de Acoplamento Molecular , Peptídeos , Estrutura Secundária de Proteína
12.
Neurochem Int ; 157: 105340, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35398187

RESUMO

INTRODUCTION: Cervical spondylotic myelopathy (CSM) is the most prevalent type of non-traumatic spinal cord injury. The pathological process of CSM is relatively complicated. Most of the chronic cervical cord compression animal models established using hydrophilic expanding polymer are single-segment compression, which was deviated from clinical practice with double-segment or multi-segment compression. This study aims to better mimic the actual clinical compression by using a new type of hydrophilic expanding polymer to establish an animal model of double-level cervical cord compression. MATERIALS AND METHODS: Progressive cord compression was done with implantation of polyvinyl alcohol-polyacrylamide hydrogel in the spinal canal at the C3-4 and C5-6 levels. Sprague-Dawley rats (n = 32) were divided into three groups: sham (no compression, n = 12) and screw compression group (n = 8), and hydrogel compression group (n = 12). Functional deficits were characterized using motor function scores, forelimb grip strength, hindlimb pain threshold, and gait analysis, while compression was imaged with magnetic resonance imaging. The apoptosis, inflammation, and demyelination were assessed by hematoxylin and eosin staining, Luxol fast blue staining, TUNEL assay, immunofluorescence staining, and Western blot analysis. RESULTS: Motor function scores for rats with cervical cord hydrogel compression were significantly decline in motor function scores, an increase in allodynia, neurons and oligodendrocytes apoptosis related to B cell lymphoma-2 (Bcl-2)/Bcl-2 associated X (Bax)/cleaved caspase-3, and impaired axonal conduction, as well as neuroinflammation zone related to microglia or macrophages aggregation related to the nucleotide-binding domain, leucine-rich-repeat-containing family, pyrin domain-containing 3 (NLRP3) inflammasome activation, and activation of astrocytes, as well as oxidative stress were observed. CONCLUSION: We believe that this model utilizing compression on double-level cervical cord will allow researchers to investigate of translationally relevant therapeutic methods for CSM.


Assuntos
Medula Cervical , Compressão da Medula Espinal , Doenças da Medula Espinal , Animais , Apoptose/fisiologia , Medula Cervical/patologia , Hidrogéis/farmacologia , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/patologia , Polímeros , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Sprague-Dawley , Compressão da Medula Espinal/etiologia , Compressão da Medula Espinal/patologia , Compressão da Medula Espinal/cirurgia , Doenças da Medula Espinal/complicações , Doenças da Medula Espinal/metabolismo , Doenças da Medula Espinal/patologia , Doenças da Medula Espinal/cirurgia
13.
Oxid Med Cell Longev ; 2022: 7650438, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36092162

RESUMO

Ischemic stroke, the most common type of stroke, can lead to a long-term disability with the limitation of effective therapeutic approaches. Ginsenoside-Rd (G-Rd) has been found as a neuroprotective agent. In order to investigate and discuss the neuroprotective function and underlying mechanism of G-Rd in experimental animal models following cerebral ischemic/reperfusion (I/R) injury, PubMed, Embase, SinoMed, and China National Knowledge Infrastructure were searched from their inception dates to May 2022, with no language restriction. Studies that G-Rd was used to treat cerebral I/R damage in vivo were selected. A total of 18 articles were included in this paper, and it was showed that after cerebral I/R damage, G-Rd administration could significantly attenuate infarct volume (19 studies, SMD = -1.75 [-2.21 to - 1.30], P < 0.00001). Subgroup analysis concluded that G-Rd at the moderate doses of >10- <50 mg/kg reduced the infarct volume to the greatest extent, and increasing the dose beyond 50 mg/kg did not produce better results. The neuroprotective effect of G-Rd was not affected by other factors, such as the animal species, the order of administration, and the ischemia time. In comparison with the control group, G-Rd administration could improve neurological recovery (lower score means better recovery: 14 studies, SMD = -1.50 [-2.00 to - 1.00], P < 0.00001; higher score means better recovery: 8 studies, SMD = 1.57 [0.93 to 2.21], P < 0.00001). In addition, this review suggested that G-Rd in vivo can antagonize the reduced oxidative stress, regulate Ca2+, and inhibit inflammatory, resistance to apoptosis, and antipyroptosis on cerebral I/R damage. Collectively, G-Rd is a promising natural neuroprotective agent on cerebral I/R injury with unique advantages and a clear mechanism of action. More clinical randomized, blind-controlled trials are also needed to confirm the neuroprotective effect of G-Rd on cerebral I/R injury.


Assuntos
Isquemia Encefálica , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Animais , Isquemia Encefálica/tratamento farmacológico , Ginsenosídeos , Infarto/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Traumatismo por Reperfusão/tratamento farmacológico
14.
Food Chem ; 362: 130237, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34091163

RESUMO

Thrombin is a key therapeutic target protein of thrombosis. To date, massive studies have focused on the exploration of antithrombotic compounds. Here we capitalize on molecular docking, molecular simulations and spectroscopic experiments for virtually screening natural products that can inhibit thrombin and elucidating their interaction mechanism. Six compounds are screened from a natural product database by a cross-analysis based on two semi-flexible molecular docking methods. We show that four compounds can effectively inhibit thrombin and Calceolarioside B is the most competitive one based on enzyme inhibition experiments. Moreover, the binding free energies of these compounds with thrombin exhibit a consistent rank trend with their enzyme inhibition assay results. In addition, the Van der Waals is the main force to drive the interaction between the ligands and the receptor, which can be deduced from the fluorescence spectral results. This work provides a new insight into the development of antithrombotic natural compounds.


Assuntos
Ingredientes de Alimentos/análise , Alimento Funcional/análise , Produtos Biológicos/química , Fibrinolíticos/química , Fibrinolíticos/farmacologia , Ligantes , Simulação de Acoplamento Molecular , Ligação Proteica/efeitos dos fármacos , Trombina/metabolismo , Interface Usuário-Computador
15.
Food Chem ; 339: 128106, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33152886

RESUMO

It is practical to inhibit the allergenicity of ß-lactoglobulin (ß-LG) using natural products acting via noncovalent interactions; however, the mechanism of the effect has not been investigated in detail. Herein, the comprehensive noncovalent mechanism of inhibition of the antigenicity of ß-LG by six flavonoids (kaempferol, myricetin, phloretin, epigallocatechin-3-gallate (EGCG), naringenin, and quercetin) was investigated by spectroscopic and molecular docking methods. Our results indicate that six flavonoids reduced the antigenicity of ß-LG in the following order: EGCG > phloretin > naringenin > myricetin > kaempferol > quercetin, with antigenic inhibition rates of 72.6%, 68.4%, 59.7%, 52.3%, 51.4% and 40.8%, respectively. Six flavonoids induced distinct conformational changes in ß-LG, which were closely associated with a decline in antigenicity of ß-LG. The flavonoids bound to specific antigen epitopes in the ß-sheet and ß-turn of ß-LG to induce a decrease in the antigenicity of the protein.


Assuntos
Flavonoides/farmacologia , Lactoglobulinas/química , Lactoglobulinas/imunologia , Alérgenos/química , Alérgenos/imunologia , Alérgenos/metabolismo , Dicroísmo Circular , Epitopos/metabolismo , Flavonoides/química , Flavonoides/metabolismo , Lactoglobulinas/metabolismo , Simulação de Acoplamento Molecular , Conformação Proteica , Espectrometria de Fluorescência , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral
16.
Food Chem ; 343: 128486, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33160778

RESUMO

The edible Pickering emulsion gels stabilized by dihydromyricetin were fabricated for the first time. To clarify the formation mechanism, dihydromyricetin particles were first characterized. Then, the factors influencingthe gel formation, microstructure and mechanical properties were investigated. Finally, the molecular dynamics simulation was performed to clarify the microscopic behavior of dihydromyricetin in an oil-water system. The results indicated that dihydromyricetin particles occurred as regular rod-shaped crystals with amphiphilicity. They formed a 3D steric network by overlapping with each other, separating oil droplets and stabilizing O/W emulsion gels. The dihydromyricetin concentration and oil-phase weight fraction had a significant influence on the formation and mechanical properties of gels. The alkali and low ionic strength conditions benefited the gel stability. The molecular dynamics showed that dihydromyricetin could spontaneously and quickly transfer to the oil-water interface, reduce the interfacialtension and enhance the interface thickness, which agreed with the experimental results.


Assuntos
Flavonóis/química , Emulsões , Géis , Concentração Osmolar
17.
Mol Cancer ; 9: 252, 2010 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-20858269

RESUMO

ß-catenin, a key factor in the Wnt signaling pathway, has essential functions in the regulation of cell growth and differentiation. Aberrant ß-catenin signaling has been linked to various disease pathologies, including an important role in tumorigenesis. Here, we review the regulation of the Wnt signaling pathway as it relates to ß-catenin signaling in tumorigenesis, with particular focus on the role of microRNAs. Finally, we discuss the potential of ß-catenin targeted therapeutics for cancer treatment.


Assuntos
MicroRNAs/metabolismo , Transdução de Sinais/fisiologia , beta Catenina/metabolismo , Animais , Humanos , MicroRNAs/genética , Modelos Biológicos , Neoplasias/genética , Neoplasias/metabolismo , Transdução de Sinais/genética , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , beta Catenina/genética
18.
Mol Cancer ; 9: 229, 2010 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-20813046

RESUMO

BACKGROUND: MiR-221 and miR-222 (miR-221/222) are frequently up-regulated in various types of human malignancy including glioblastoma. Recent studies have reported that miR-221/222 regulate cell growth and cell cycle progression by targeting p27 and p57. However the underlying mechanism involved in cell survival modulation of miR-221/222 remains elusive. RESULTS: Here we showed that miR-221/222 inhibited cell apoptosis by targeting pro-apoptotic gene PUMA in human glioma cells. Enforced expression of miR-22/222 induced cell survival whereas knockdown of miR-221/222 rendered cells to apoptosis. Further, miR-221/222 reduced PUMA protein levels by targeting PUMA-3'UTR. Introducing PUMA cDNA without 3'UTR abrogated miR-221/222-induced cell survival. Notably, knockdown of miR-221/222 induces PUMA expression and cell apoptosis and considerably decreases tumor growth in xenograft model. Finally, there was an inverse relationship between PUMA and miR-221/222 expression in glioma tissues. CONCLUSION: To our knowledge, these data indicate for the first time that miR-221/222 directly regulate apoptosis by targeting PUMA in glioblastoma and that miR-221/222 could be potential therapeutic targets for glioblastoma intervention.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Glioblastoma/metabolismo , Glioblastoma/terapia , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Apoptose/genética , Proteínas Reguladoras de Apoptose/genética , Northern Blotting , Western Blotting , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Feminino , Glioblastoma/genética , Humanos , Imuno-Histoquímica , Hibridização In Situ , Técnicas In Vitro , Camundongos , Camundongos Nus , MicroRNAs/genética , Células NIH 3T3 , Proteínas Proto-Oncogênicas/genética , Ensaios Antitumorais Modelo de Xenoenxerto
19.
BMC Cancer ; 10: 27, 2010 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-20113523

RESUMO

BACKGROUND: Substantial data indicate that the oncogene microRNA 21 (miR-21) is significantly elevated in glioblastoma multiforme (GBM) and regulates multiple genes associated with cancer cell proliferation, apoptosis, and invasiveness. Thus, miR-21 can theoretically become a target to enhance the chemotherapeutic effect in cancer therapy. So far, the effect of downregulating miR-21 to enhance the chemotherapeutic effect to taxol has not been studied in human GBM. METHODS: Human glioblastoma U251 (PTEN-mutant) and LN229 (PTEN wild-type) cells were treated with taxol and the miR-21 inhibitor (in a poly (amidoamine) (PAMAM) dendrimer), alone or in combination. The 50% inhibitory concentration and cell viability were determined by the MTT assay. The mechanism between the miR-21 inhibitor and the anticancer drug taxol was analyzed using the Zheng-Jun Jin method. Annexin V/PI staining was performed, and apoptosis and the cell cycle were evaluated by flow cytometry analysis. Expression of miR-21 was investigated by RT-PCR, and western blotting was performed to evaluate malignancy related protein alteration. RESULTS: IC(50) values were dramatically decreased in cells treated with miR-21 inhibitor combine with taxol, to a greater extent than those treated with taxol alone. Furthermore, the miR-21 inhibitor significantly enhanced apoptosis in both U251 cells and LN229 cells, and cell invasiveness was obviously weakened. Interestingly, the above data suggested that in both the PTEN mutant and the wild-type GBM cells, miR-21 blockage increased the chemosensitivity to taxol. It is worth noting that the miR-21 inhibitor additively interacted with taxol on U251cells and synergistically on LN229 cells. Thus, the miR-21 inhibitor might interrupt the activity of EGFR pathways, independently of PTEN status. Meanwhile, the expression of STAT3 and p-STAT3 decreased to relatively low levels after miR-21 inhibitor and taxol treatment. The data strongly suggested that a regulatory loop between miR-21 and STAT3 might provide an insight into the mechanism of modulating EGFR/STAT3 signaling. CONCLUSIONS: Taken together, the miR-21 inhibitor could enhance the chemo-sensitivity of human glioblastoma cells to taxol. A combination of miR-21 inhibitor and taxol could be an effective therapeutic strategy for controlling the growth of GBM by inhibiting STAT3 expression and phosphorylation.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , MicroRNAs/genética , PTEN Fosfo-Hidrolase/genética , Paclitaxel/farmacologia , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Concentração Inibidora 50 , Modelos Biológicos , Fosforilação , Fator de Transcrição STAT3/metabolismo , Sais de Tetrazólio/farmacologia , Tiazóis/farmacologia
20.
J Neurooncol ; 98(3): 329-40, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20035367

RESUMO

Our previous study demonstrated that SEPT7 was downregulated at mRNA level in human gliomas. This study is to further examine the expression of SEPT7 in glioma samples and characterizes its role on cell cycle progression and growth of glioma cells. mRNA and protein expression of SEPT7 were detected by RT-PCR, immunohistochemical staining, and western blot analysis in human glioma specimens and normal brain tissues. A pcDNA3-SEPT7 expression plasmid was constructed and transfected into human glioblastoma cell line U251, and cell proliferation and apoptosis were examined. The growth of established U251 and TJ905 subcutaneous xenograft gliomas was measured in nude mice treated with pcDNA3-SEPT7 and U251 xenograft tumors treated with SEPT7 siRNA. SEPT7 expression is negatively correlated with the increase of glioma grade. Overexpression of SEPT7 is able to inhibit cell proliferation and arrest cell cycle progression in the G0/G1 phase both in vitro and in vivo. Knocking down further the already low endogenous expression of SEPT7 in U251 xenograft tumors with siRNA leads to faster tumor growth compared with control tumors. This study demonstrates that SEPT7 is involved in gliomagenesis and suppresses glioma cell growth.


Assuntos
Neoplasias Encefálicas/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Regulação Neoplásica da Expressão Gênica/fisiologia , Glioma/metabolismo , Análise de Variância , Animais , Apoptose/fisiologia , Encéfalo/metabolismo , Neoplasias Encefálicas/patologia , Caspase 3/metabolismo , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Proteínas do Citoesqueleto/genética , Modelos Animais de Doenças , Citometria de Fluxo/métodos , Proteínas de Ligação ao GTP/genética , Proteína Glial Fibrilar Ácida/metabolismo , Glioma/patologia , Humanos , Marcação In Situ das Extremidades Cortadas/métodos , Camundongos , Camundongos Nus , Transplante de Neoplasias/mortalidade , Transplante de Neoplasias/patologia , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/farmacologia , Septinas , Fatores de Tempo , Análise Serial de Tecidos/métodos , Transfecção/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA