RESUMO
The proper functioning of living systems and physiological phenotypes depends on molecular composition. Yet simultaneous quantitative detection of a wide variety of molecules remains a challenge1-8. Here we show how broadband optical coherence opens up opportunities for fingerprinting complex molecular ensembles in their natural environment. Vibrationally excited molecules emit a coherent electric field following few-cycle infrared laser excitation9-12, and this field is specific to the sample's molecular composition. Employing electro-optic sampling10,12-15, we directly measure this global molecular fingerprint down to field strengths 107 times weaker than that of the excitation. This enables transillumination of intact living systems with thicknesses of the order of 0.1 millimetres, permitting broadband infrared spectroscopic probing of human cells and plant leaves. In a proof-of-concept analysis of human blood serum, temporal isolation of the infrared electric-field fingerprint from its excitation along with its sampling with attosecond timing precision results in detection sensitivity of submicrograms per millilitre of blood serum and a detectable dynamic range of molecular concentration exceeding 105. This technique promises improved molecular sensitivity and molecular coverage for probing complex, real-world biological and medical settings.
Assuntos
Biomarcadores/sangue , Análise Química do Sangue/métodos , Soro/química , Espectrofotometria Infravermelho , Biomarcadores/química , Análise Química do Sangue/instrumentação , Humanos , Sensibilidade e Especificidade , Água/químicaRESUMO
Parametric downconversion driven by modern, high-power sources of 10-fs-scale near-infrared pulses, in particular intrapulse difference-frequency generation (IPDFG), affords combinations of properties desirable for molecular vibrational spectroscopy in the mid-infrared range: broad spectral coverage, high brilliance, and spatial and temporal coherence. Yet, unifying these in a robust and compact radiation source has remained a key challenge. Here, we address this need by employing IPDFG in a multi-crystal in-line geometry, driven by the 100-W-level, 10.6-fs pulses of a 10.6-MHz-repetition-rate, nonlinearly post-compressed Yb:YAG thin-disk oscillator. Polarization tailoring of the driving pulses using a bichromatic waveplate is followed by a sequence of two crystals, LiIO3 and LiGaS2, resulting in the simultaneous coverage of the 800-cm-1-to-3000-cm-1 spectral range (at -30-dB intensity) with 130â mW of average power. We demonstrate that optical-phase coherence is maintained in this in-line geometry, in theory and experiment, the latter employing ultra-broadband electro-optic sampling. These results pave the way toward coherent spectroscopy schemes like field-resolved and frequency-comb spectroscopy, as well as nonlinear, ultrafast spectroscopy and optical-waveform synthesis across the entire infrared molecular fingerprint region.
RESUMO
Metallic spintronic terahertz (THz) emitters have become well-established for offering ultra-broadband, gapless THz emission in a variety of excitation regimes, in combination with reliable fabrication and excellent scalability. However, so far, their potential for high-average-power excitation to reach strong THz fields at high repetition rates has not been thoroughly investigated. In this article, we explore the power scaling behavior of tri-layer spintronic emitters using an Yb-fiber excitation source, delivering an average power of 18.5 W (7 W incident on the emitter after chopping) at 400 kHz repetition rate, temporally compressed to a pulse duration of 27 fs. We confirm that a reflection geometry with back-side cooling is ideally suited for these emitters in the high-average-power excitation regime. In order to understand limiting mechanisms, we disentangle the effects on THz power generation by average power and pulse energy by varying the repetition rate of the laser. Our results show that the conversion efficiency is predominantly determined by the incident fluence in this high-average-power, high-repetition-rate excitation regime if the emitters are efficiently cooled. Using these findings, we optimize the conversion efficiency and reach highest excitation powers in the back-cooled reflection geometry. Our findings provide guidelines for scaling the power of THz radiation emitted by spintronic emitters to the milliwatt-level by using state-of-the-art femtosecond sources with multi-hundred-Watt average power to reach ultra-broadband, strong-field THz sources with high repetition rate.
RESUMO
We demonstrate ultra-rapid electro-optic sampling (EOS) of octave-spanning mid-infrared pulses centered at 9 µm, implemented by mechanically scanning a mirror with a sonotrode resonating at 19 kHz (forward and backward acquisition at 38 kHz). The instrument records the infrared waveform with a spectral intensity dynamic range of 1.6 × 105 for a single scan over a 1.6-ps delay range, acquired within 26 µs. The purely reflective nature of the delay scanning technique is compatible with broad optical bandwidths, short pulse durations (16 fs, centered at 1030 nm) and high average powers (Watt-level). Interferometric tracking of the sonotrode motion in combination with a predictor-corrector algorithm allows for delay-axis determination with down to single-digit attosecond precision. Ultra-rapid mid-infrared EOS will advance applications such as molecular fingerprinting of static samples as well as tracking of biological processes and chemical reactions and is likely to find new fields of application such as infrared-spectroscopic flow cytometry.
RESUMO
The strong absorption of liquid water in the infrared (IR) molecular fingerprint region constitutes a challenge for applications of vibrational spectroscopy in chemistry, biology, and medicine. While high-power IR laser sources enable the penetration of ever thicker aqueous samples, thereby mitigating the detrimental effects of strong attenuation on detection sensitivity, a basic advantage of heterodyne-measurement-based methods has-to the best of our knowledge-not been harnessed in broadband IR measurements to date. Here, employing field-resolved spectroscopy (FRS), we demonstrate in theory and experiment fundamental advantages of techniques whose signal-to-noise ratio (SNR) scales linearly with the electric field over those whose SNR scales linearly with radiation intensity, including conventional Fourier-transform infrared (FTIR) and direct absorption spectroscopy. Field-scaling brings about two major improvements. First, it squares the measurement dynamic range. Second, we show that the optimum interaction length with samples for SNR-maximized measurements is twice the value usually considered to be optimum for FTIR devices. In order to take full advantage of these properties, the measurement must not be significantly affected by technical noise, such as intensity fluctuations, which are common for high-power sources. Recently, it has been shown that subcycle, nonlinear gating of the molecular fingerprint signal renders FRS robust against intensity noise. Here, we quantitatively demonstrate this advantage of FRS for thick aqueous samples. We report sub-µg/mL detection sensitivities for transmission path lengths up to 80 µm and a limit of detection in the lower µg/mL range for transmission paths as long as 200 µm.
RESUMO
Precise delay control is of paramount importance in optical pump-probe measurements. Here, we report on a high-precision delay tracking technique for mechanical scanning measurements in a Mach-Zehnder interferometer configuration. The setup employs a 1.55-µm continuous-wave laser beam propagating along the interferometer arms. Sinusoidal phase modulation at 30 MHz, and demodulation of the interference signal at the fundamental frequency and its second harmonic, enables delay tracking with sampling rates of up to 10 MHz. At an interferometer arm length of 1 m, root-mean-square error values of the relative delay tracking below 10 attoseconds for both stationary and mechanically scanned (0.2 mm/s) operation are demonstrated. By averaging several scans, a precision of the delay determination better than 1 as is reached. We demonstrate this performance with a mechanical chopper periodically interrupting one of the interferometer arms, which opens the door to the combination of high-sensitivity lock-in detection with (sub-)attosecond-precision relative delay determination.
RESUMO
Femtosecond enhancement cavities have enabled multi-10-MHz-repetition-rate coherent extreme ultraviolet (XUV) sources with photon energies exceeding 100 eV - albeit with rather severe limitations of the net conversion efficiency and of the duration of the XUV emission. Here, we explore the possibility of circumventing both these limitations by harnessing spatiotemporal couplings in the driving field, similar to the "attosecond lighthouse," in theory and experiment. Our results predict dramatically improved output coupling efficiencies and efficient generation of isolated XUV attosecond pulses.
RESUMO
Near-single-cycle mid-infrared pulses with a spectrum covering 5.4-11 µm are efficiently frequency-doubled in different GaSe crystals. The second-harmonic spectrum spans 3-4.3 µm at a power conversion efficiency of >20%. We measure an effective nonlinear coefficient of deff≈35 pm/V. We also report on self-phase modulation and spectral broadening of the mid-infrared pulses in various bulk materials and find an increase of 45% of spectral width for 5 mm of Ge. These results demonstrate that nonlinear optical conversions can efficiently be driven by few-cycle mid-infrared radiation.
RESUMO
A gold-coated silicon grating has been developed, enabling efficient spatial separation of broadband mid-infrared (MIR) beams with wavelengths >5 µm from collinearly propagating, broadband, high-power light in the near-infrared (NIR) spectral range (centered at 2 µm). The optic provides spectral filtering at high powers in a thermally robust and chromatic-dispersion-free manner such as that necessary for coherent MIR radiation sources based on parametric frequency downconversion of femtosecond NIR lasers. The suppression of a >20 W average-power, 2 µm driving pulse train by three orders of magnitude, while retaining high reflectivity of the broadband MIR beam, is presented.
RESUMO
Broadband dispersive mirrors operating in the mid-infrared spectral range of 6.5-11.5 µm are developed for the first time, to the best of our knowledge. The mirrors comprise Ge and YbF3 layers, which have not been used before for manufacturing of multilayer dispersive optics. The design and production processes are described; mechanical stresses of the coatings are estimated based on experimental data; and spectral and phase properties of the produced mirrors are measured. The mirrors compensate group delay dispersion of ultrashort laser pulses accumulated by propagation through 4 mm ZnSe windows and additional residual phase modulation of an ultrashort laser pulse.
RESUMO
Excess relative intensity noise (RIN) constitutes one of the major limitations of most spectroscopic methods involving lasers. Here, we present an active RIN suppression scheme for a coherent mid-infrared (MIR) light source (8.4-11 µm), based on intra-pulse difference frequency generation (DFG). Three different stabilization concepts that rely on modulating the intensity of the driving near-infrared (NIR) pulse train with an acousto-optic modulator are investigated and compared. By using the wings of the NIR spectrum to generate the error signal, a RIN suppression of the MIR pulse train of up to a factor of 20 was achieved in the band between 1 Hz and 100 kHz, resulting in a total integrated RIN of 0.07%.
RESUMO
State-of-the-art optical switches for coupling pulses into and/or out of resonators are based on either the electro-optic or the acousto-optic effect in transmissive elements. In high-power applications, the damage threshold and other nonlinear and thermal effects in these elements impede further improvements in pulse energy, duration, and average power. We propose a new optomechanical switching concept which is based solely on reflective elements and is suitable for switching times down to the ten-nanosecond range. To this end, an isolated section of a beam path is moved in a system comprising mirrors rotating at a high angular velocity and stationary imaging mirrors, without affecting the propagation of the beam thereafter. We discuss three variants of the concept and exemplify practical parameters for its application in regenerative amplifiers and stack-and-dump enhancement cavities. We find that optomechanical pulse picking has the potential to achieve switching rates of up to a few tens of kilohertz while supporting pulse energies of up to several joules.
RESUMO
Periodic dumping of ultrashort laser pulses from a passive multi-MHz repetition-rate enhancement cavity is a promising route towards multi-kHz repetition-rate pulses with Joule-level energies at an unparalleled average power. Here, we demonstrate this so-called stack-and-dump scheme with a 30-m-long cavity. Using an acousto-optic modulator, we extract pulses of 0.16 mJ at 30-kHz repetition rate, corresponding to 65 stacked input pulses, representing an improvement in three orders of magnitude over previously extracted pulse energies. The ten times longer cavity affords three essential benefits over former approaches. First, the time between subsequent pulses is increased to 100 ns, relaxing the requirements on the switch. Second, it allows for the stacking of strongly stretched pulses (here from 800 fs to 1.5 ns), thus mitigating nonlinear effects in the cavity optics. Third, the choice of a long cavity offers increased design flexibility with regard to thermal robustness, which will be crucial for future power scaling. The herein presented results constitute a necessary step towards stack-and-dump systems providing access to unprecedented laser parameter regimes.
RESUMO
We introduce and experimentally validate a pulse picking technique based on a travelling-wave-type acousto-optic modulator (AOM) having the AOM carrier frequency synchronized to the repetition rate of the original pulse train. As a consequence, the phase noise characteristic of the original pulse train is largely preserved, rendering this technique suitable for applications requiring carrier-envelope phase stabilization. In a proof-of-principle experiment, the 1030-nm spectral part of an 74-MHz, carrier-envelope phase stable Ti:sapphire oscillator is amplified and reduced in pulse repetition frequency by a factor of two, maintaining an unprecedentedly low carrier-envelope phase noise spectral density of below 68 mrad. Furthermore, a comparative analysis reveals that the pulse-picking-induced additional amplitude noise is minimized, when the AOM is operated under synchronicity. The proposed scheme is particularly suitable when the down-picked repetition rate is still in the multi-MHz-range, where Pockels cells cannot be applied due to piezoelectric ringing.
RESUMO
The generation of laser pulses with controlled optical waveforms, and their measurement, lie at the heart of both time-domain and frequency-domain precision metrology. Here, we obtain mid-infrared waves via intra-pulse difference-frequency generation (IPDFG) driven by 16-femtosecond near-infrared pulses, and characterise the jitter of sub-cycle fractions of these waves relative to the gate pulses using electro-optic sampling (EOS). We demonstrate sub-attosecond temporal jitter at individual zero-crossings and sub-0.1%-level relative amplitude fluctuations in the 10-kHz-0.625-MHz band. Chirping the nearly-octave-spanning mid-infrared pulses uncovers wavelength-dependent attosecond-scale waveform jitter. Our study validates EOS as a broadband (both in the radio-frequency and the optical domains), highly sensitive measurement technique for the jitter dynamics of optical waveforms. This sensitivity reveals outstanding stability of the waveforms obtained via IPDFG and EOS, directly benefiting precision measurements including linear and nonlinear (infrared) field-resolved spectroscopy. Furthermore, these results form the basis toward EOS-based active waveform stabilisation and sub-attosecond multi-oscillator synchronisation/delay tracking.
RESUMO
We demonstrate micro structuring of fused-silica laser mirror substrates by Inverse Laser Drilling. Slits of a width down to ~80 µm and circular holes with diameters down to ~50 µm have been structured into quarter-inch thick substrates. Except for chipping, the surface areas around these openings have not been irreversibly affected by the manufacturing process. The micro structured mirrors can be used for geometrical output coupling of coherent EUV radiation from cavity-enhanced high harmonic generation.
RESUMO
In passive enhancement cavities the achievable power level is limited by mirror damage. Here, we address the design of robust optical resonators with large spot sizes on all mirrors, a measure that promises to mitigate this limitation by decreasing both the intensity and the thermal gradient on the mirror surfaces. We introduce a misalignment sensitivity metric to evaluate the robustness of resonator designs. We identify the standard bow-tie resonator operated close to the inner stability edge as the most robust large-mode cavity and implement this cavity with two spherical mirrors with 600 mm radius of curvature, two plane mirrors and a round trip length of 1.2 m, demonstrating a stable power enhancement of near-infrared laser light by a factor of 2000. Beam radii of 5.7 mm × 2.6 mm (sagittal × tangential 1/e(2) intensity radius) on all mirrors are obtained. We propose a simple all-reflective ellipticity compensation scheme. This will enable a significant increase of the attainable power and intensity levels in enhancement cavities.
Assuntos
Desenho Assistido por Computador , Lentes , Refratometria/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Modelos TeóricosRESUMO
We present the first (to our best knowledge) femtosecond enhancement cavity in the visible wavelength range for ultraviolet frequency comb generation. The cavity is seeded at 518 nm by a frequency-doubled Yb fiber laser and operates at a peak intensity of 1.2×10(13) W/cm(2). High harmonics of up to the ninth order (~57 nm) are generated in an intracavity xenon gas jet. Intracavity high harmonic powers of several milliwatts for the third harmonic order and microwatts for the fifth harmonic order prove the potential of the "green cavity" as an efficient ultraviolet frequency comb source for future spectroscopic experiments. A limiting degradation effect of the cavity mirrors is avoided by operating at a constant oxygen background pressure.
RESUMO
The evolution of ultrafast-laser technology has steadily advanced the level of detail in studies of light-matter interactions. Here, we employ electric-field-resolved spectroscopy and quantum-chemical modelling to precisely measure and describe the complete coherent energy transfer between octave-spanning mid-infrared waveforms and vibrating molecules in aqueous solution. The sub-optical-cycle temporal resolution of our technique reveals alternating absorption and (stimulated) emission on a few-femtosecond time scale. This behaviour can only be captured when effects beyond the rotating wave approximation are considered. At a femtosecond-to-picosecond timescale, optical-phase-dependent coherent transients and the dephasing of the vibrations of resonantly excited methylsulfonylmethane (DMSO2) are observed. Ab initio modelling using density functional theory traces these dynamics back to molecular-scale sample properties, in particular vibrational frequencies and transition dipoles, as well as their fluctuation due to the motion of DMSO2 through varying solvent environments. Future extension of our study to nonlinear interrogation of higher-order susceptibilities is fathomable with state-of-the-art lasers.
RESUMO
We demonstrate a high-finesse femtosecond enhancement cavity with an on-axis obstacle. By inserting a wire with a width of 5% of the fundamental mode diameter, the finesse of F = 3400 is only slightly reduced to F = 3000. The low loss is due to the degeneracy of transverse modes, which allows for exciting a circulating field distribution avoiding the obstacle. We call this condition quasi-imaging. The concept could be used for output coupling of intracavity-generated higher-order harmonics through an on-axis opening in one of the cavity mirrors.