Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 78(4): 1405-1421, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33084945

RESUMO

Mitochondria are not only important for cellular bioenergetics but also lie at the heart of critical metabolic pathways. They can rapidly adjust themselves in response to changing conditions and the metabolic needs of the cell. Mitochondrial involvement as well as its dysfunction has been found to be associated with variety of pathological processes and diseases. mitomiRs are class of miRNA(s) that regulate mitochondrial gene expression and function. This review sheds light on the role of mitomiRs in regulating different biological processes-mitochondrial dynamics, oxidative stress, cell metabolism, chemoresistance, apoptosis,and their relevance in metabolic diseases, neurodegenerative disorders, and cancer. Insilico analysis of predicted targets of mitomiRs targeting energy metabolism identified several significantly altered pathways (needs in vivo validations) that may provide a new therapeutic approach for the treatment of human diseases. Last part of the review discusses about the clinical aspects of miRNA(s) and mitomiRs in Medicine.


Assuntos
MicroRNAs/genética , Mitocôndrias/genética , Doenças Mitocondriais/genética , Neoplasias/genética , Apoptose/genética , Metabolismo Energético/genética , Regulação da Expressão Gênica/genética , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia , Neoplasias/metabolismo , Neoplasias/patologia , Estresse Oxidativo/genética
2.
RNA Biol ; 16(7): 918-929, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30932749

RESUMO

Mitochondrial dynamics is a highly dysregulated process in cancer. Apoptosis and mitochondrial fission are two concurrent events wherein increased mitochondrial fragmentation serves as a hallmark of apoptosis. We have shown earlier that miR-195 exerts pro-apoptotic effects in breast cancer cells. Herein, we have demonstrated miR-195 as a modulator of mitochondrial dynamics and function. Imaging experiments upon miR-195 treatment have shown that mitochondria undergo extensive fission. We validated mitofusin2 as a potential target of miR-195. This may provide a molecular explanation for the respiratory defects induced by miR-195 over-expression in breast cancer cells. Active, but not total, mitochondrial mass, was reduced with increasing levels of miR-195. We have further shown that miR-195 enhances mitochondrial SOD-2 expression but does not affect PINK1 levels in breast cancer cells. Collectively, we have revealed that miR-195 is a modulator of mitochondrial dynamics by targeting MFN2 thereby impairing mitochondrial function. Concomitantly, it enhances the scavenger of reactive oxygen species (SOD-2) to maintain moderate levels of oxidative stress. Our findings suggest a therapeutic potential of miR-195 in both ER-positive as well as ER-negative breast cancer cells.


Assuntos
Neoplasias da Mama/genética , GTP Fosfo-Hidrolases/metabolismo , MicroRNAs/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Regiões 3' não Traduzidas/genética , Apoptose , Sequência de Bases , Linhagem Celular Tumoral , Respiração Celular , Regulação para Baixo/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Mitocôndrias/ultraestrutura , Dinâmica Mitocondrial , Mitofagia , Estresse Oxidativo , Consumo de Oxigênio
3.
Neurosci Biobehav Rev ; 161: 105685, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38670299

RESUMO

Alzheimer's Disease (AD) remains a formidable challenge due to its complex pathology, notably involving mitochondrial dysfunction and dysregulated microRNA (miRNA) signaling. This study delves into the underexplored realm of miRNAs' impact on mitochondrial dynamics and their interplay with amyloid-beta (Aß) aggregation and tau pathology in AD. Addressing identified gaps, our research utilizes advanced molecular techniques and AD models, alongside patient miRNA profiles, to uncover miRNAs pivotal in mitochondrial regulation. We illuminate novel miRNAs influencing mitochondrial dynamics, Aß, and tau, offering insights into their mechanistic roles in AD progression. Our findings not only enhance understanding of AD's molecular underpinnings but also spotlight miRNAs as promising therapeutic targets. By elucidating miRNAs' roles in mitochondrial dysfunction and their interactions with hallmark AD pathologies, our work proposes innovative strategies for AD therapy, aiming to mitigate disease progression through targeted miRNA modulation. This contribution marks a significant step toward novel AD treatments, emphasizing the potential of miRNAs in addressing this complex disease.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , MicroRNAs , Microglia , Dinâmica Mitocondrial , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , MicroRNAs/metabolismo , MicroRNAs/genética , Humanos , Peptídeos beta-Amiloides/metabolismo , Dinâmica Mitocondrial/fisiologia , Animais , Microglia/metabolismo , Transdução de Sinais/fisiologia
4.
Life Sci ; 307: 120906, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36007610

RESUMO

Targeted therapy is receiving considerable attention from the researchers around the globe owing to the increased drug-resistance and incidences of cancer recurrences. MicroRNAs (miRNAs) exhibits tremendous potential as a candidate for molecular targeted therapy in cancer. Unfortunately, majority of research related to microRNAs are focussed on either a particular miRNA or a set of unrelated miRNAs. There is lack of holistic knowledge on differential co-expression of miRNA clusters in regulating the gene expression under physiological conditions. Previously, we reported the cooperative effect of hsa-miR-23a~27a~24-2 cluster in inducing ER (Endoplasmic Reticulum) stress-mediated apoptotic cell death of HEK cells. In the present study, we have investigated the common anti-cancer effects of individual members of this cluster. Our in silico analysis identified twelve common target genes distributed across three independent clusters. Furthermore, we found NCOA1, NLK, and RAP1B to fall in a single cluster with NCOA1 as a central hub molecule. Prognostic analysis showed profound involvement of these three genes in the breast cancer progression and metastasis. We further demonstrated that alteration in the levels of individual members of miR-23a~27a~24-2 cluster commonly regulates the invasive migration of breast cancer cells by modulating EMT and cytoskeletal pathway proteins. Our results reveal a new insight into the therapeutic potential of individual members of the pro-apoptotic hsa-miR-23a~27a~24-2 cluster family against metastatic breast cancer.


Assuntos
Neoplasias da Mama , MicroRNAs , Apoptose/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Estresse do Retículo Endoplasmático , Feminino , Humanos , MicroRNAs/metabolismo , Recidiva Local de Neoplasia , Coativador 1 de Receptor Nuclear , Proteínas Serina-Treonina Quinases , Proteínas rap de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA