Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Exp Cell Res ; 399(1): 112397, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33338477

RESUMO

Ovarian metastases exfoliate from the primary tumor and it is thought that aggregation supports their survival in the peritoneal cavity during dissemination but the underlying mechanisms are not clearly identified. We have previously shown that ovarian cancer cells acquire an increasingly glycolytic and metabolic flexible phenotype during progression. In the present study, we investigated how hypoxia, aggregation, and the incorporation of the obese stromal vascular fraction (SVF) affect cellular metabolism and the response to common anti-cancer and anti-diabetic drugs. Our results show a reduction of glucose uptake, lactate secretion, cellular respiration and ATP synthesis in response to hypoxia and aggregation, suggesting that the observed reduced proliferation of cells aggregated into spheroids is the result of a down-regulation of respiration. Recruitment of SVF to spheroids increased the spheroids invasive capacity but reduced respiration only in the most aggressive cells. Further, aggregation and hypoxia reduced the response to the metabolic drugs AICAR and metformin, and the chemotherapeutic agents cisplatin and paclitaxel. Our results suggest that the adaptation of cellular metabolism may contribute to enhanced survival under non-permissive conditions, and that these metabolic alterations may provide targets for future interventions that aim to enhance the survival of women with metastatic ovarian cancer.


Assuntos
Carcinoma Epitelial do Ovário/patologia , Obesidade/metabolismo , Neoplasias Ovarianas/patologia , Esferoides Celulares/metabolismo , Hipóxia Tumoral/fisiologia , Adaptação Fisiológica/fisiologia , Animais , Carcinoma Epitelial do Ovário/complicações , Carcinoma Epitelial do Ovário/metabolismo , Agregação Celular , Respiração Celular/fisiologia , Sobrevivência Celular , Células Cultivadas , Feminino , Glicólise/fisiologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Metástase Neoplásica , Obesidade/complicações , Obesidade/patologia , Neoplasias Ovarianas/complicações , Neoplasias Ovarianas/metabolismo , Esferoides Celulares/patologia , Células Estromais/metabolismo , Células Estromais/patologia , Microambiente Tumoral/fisiologia
2.
J Vis Exp ; (105): e53216, 2015 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-26555567

RESUMO

Skeletal muscle mitochondria play a specific role in many disease pathologies. As such, the measurement of oxygen consumption as an indicator of mitochondrial function in this tissue has become more prevalent. Although many technologies and assays exist that measure mitochondrial respiratory pathways in a variety of cells, tissue and species, there is currently a void in the literature in regards to the compilation of these assays using isolated mitochondria from mouse skeletal muscle for use in microplate based technologies. Importantly, the use of microplate based respirometric assays is growing among mitochondrial biologists as it allows for high throughput measurements using minimal quantities of isolated mitochondria. Therefore, a collection of microplate based respirometric assays were developed that are able to assess mechanistic changes/adaptations in oxygen consumption in a commonly used animal model. The methods presented herein provide step-by-step instructions to perform these assays with an optimal amount of mitochondrial protein and reagents, and high precision as evidenced by the minimal variance across the dynamic range of each assay.


Assuntos
Mitocôndrias Musculares/metabolismo , Músculo Esquelético/ultraestrutura , Consumo de Oxigênio/fisiologia , Animais , Transporte de Elétrons , Camundongos , Modelos Animais , Músculo Esquelético/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA