Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Vis Exp ; (143)2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30663694

RESUMO

Variable microorganisms in particulate matter (PM) under different environmental conditions may have significant impacts on human health. In this study, we described a protocol for multiple analyses of the biological compositions in environmental PM. Five experiments are presented: (1) PM number monitoring by using a laser particle counter; (2) PM collection by using a cyclonic aerosol sampler; (3) PM collection by using a high-volume air sampler with filters; (4) culturable microbes collection by the Andersen six-stage sampler; and (5) detection of biological composition of environmental PM by bacterial 16SrDNA and fungal ITS region sequencing. We selected hazy days and a livestock farm as two typical examples of the application in this protocol. In this study, these two sampling methods, cyclonic aerosol sampler and filter sampler, showed different sampling efficiency. The cyclonic aerosol sampler performed much better in terms of collecting bacteria, while these two methods showed the same efficiency in collecting fungi. Filter samplers can work under low temperature conditions while cyclonic aerosol samplers have a sampling limitation for temperature. A solid impacting sampler, such as an Andersen six-stage sampler, can be used to sample bioaerosols directly into the culture medium, which increases the survival rate of culturable microorganisms. However, this method mainly relies on culture while more than 99% of microbes cannot be cultured. DNA extracted from the culturable bacteria collected by the Andersen six-stage sampler and samples collected by cyclonic aerosol sampler and filter sampler were detected by bacterial 16S rDNA and fungal ITS region sequencing.All the methods above may have wide application in many fields of study, such as environmental monitoring and airborne pathogen detection. From these results, we can conclude that these methods can be used under different conditions and may help other researchers further explore the health impacts of environmental bioaerosols.


Assuntos
Aerossóis/análise , Monitoramento Ambiental/métodos , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Fungos/genética , Tamanho da Partícula , Material Particulado/análise , Estações do Ano
2.
Environ Sci Pollut Res Int ; 25(34): 34540-34549, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30315527

RESUMO

Particulate matter (PM), a major air pollutant in Beijing in recent years, poses a formidable public health threat. Even through many studies have documented the chemical and biological characteristics of PM, less is known about these characteristics on hazardous haze days (Air Quality Index, AQI 301-500) and the difference with sunny or unhealthy haze day (AQI 151-200) characteristics. Herein, studies were performed during a red alert air pollution event (continuous hazardous haze days) and the first few days following the event (sunny days first and then unhealthy haze days) in Beijing from December 19 to 25, 2016. A laser particle counter and an ANDERSEM-6 sampler were used to study the concentration and size distributions dynamics of the PM and the culturable airborne bacteria and fungi, respectively. PM2.5 was sampled by a high-volume air sampler and the chemical compositions, bacterial and fungal community structures, and endotoxin levels were analyzed. The results showed that the PM concentrations on the hazardous haze days and unhealthy haze days were 10.7 and 8.0 times higher, respectively, than those on the sunny days. The chemical composition of PM2.5 was highly correlated with the AQI. The concentration and percentage of water-soluble inorganic ions (WSII), which dominated the PM2.5 constituents, as well as the levels of endotoxin were higher on hazardous haze days than on unhealthy haze days and sunny days. Interestingly, the abundances of bacteria and fungi demonstrated the following order: unhealthy haze days> sunny days> hazardous haze days. Most culturable bacteria and fungi were distributed in particles with aerodynamic diameters of 2.1-4.7 µm. Redundancy analysis found total organic carbon explained 30.0% and 27.1% of total variations in bacterial composition and fungal composition at the genera level, respectively. Our results facilitate a better understanding of the biological and chemical composition dynamics of PM in Beijing.


Assuntos
Microbiologia do Ar , Poluição do Ar/análise , Bactérias/genética , Fungos/genética , Material Particulado/análise , Aerossóis/análise , Poluentes Atmosféricos/análise , Pequim , Endotoxinas/análise , Íons/análise , Conceitos Meteorológicos , Tamanho da Partícula , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA