RESUMO
C-H bond functionalization involving C,C-palladacycle intermediates provides a unique platform for developing novel reactions. However, the vast majority of studies have been limited to the transformations of C(aryl),C-palladacycles. In sharp contrast, catalytic reactions involving C(alkyl),C(alkyl)-palladacycles have rarely been reported. Herein, we disclose an unprecedented cascade C(sp3)-H annulation involving C(alkyl),C(alkyl)-palladacycles. In this protocol, alkene-tethered cycloalkenyl bromides undergo intramolecular Heck/C(sp3)-H activation to generate C(alkyl),C(alkyl)-palladacycles, which can be captured by α-bromoacrylic acids to afford tricyclic fused pyridinediones. In addition, this strategy can also be applied to indole-tethered cycloalkenyl bromides to construct pentacyclic fused pyridinediones via suquential Heck dearomatization/C(sp3)-H activation/decarboxylative cyclization. Notably, the removal of α-bromoacrylic acids in the reaction of alkene-tethered cycloalkenyl bromides can build an interesting tricyclic skeleton containing a four-membered ring. Preliminary mechanistic experiments indicate that five-membered C(alkyl),C(alkyl)-palladacycles serve as the key intermediates. Meanwhile, density functional theory (DFT) calculations have provided insights into the reaction pathway.
RESUMO
Transition-metal-catalysed C-H functionalization has emerged as a powerful approach for the transformation of organic molecules due to its high atom and step economy. Palladium-catalysed intermolecular C-H annulation of aryl halides, especially those involving annulation of a five-membered C,C-palladacycle with coupling reagents, have attracted considerable attention in the past decades. This review summarizes the progress on palladium-catalysed intermolecular C-H annulation of aryl halides with various aromatic ring precursors. Mechanistically, five-membered C,C-palladacycles as intermediates are involved in the majority of reactions.
Assuntos
Paládio , Catálise , Indicadores e ReagentesRESUMO
A novel palladium-catalyzed decarboxylative cascade cyclization for the assembly of diverse fused heteropolycycles by employing α-oxocarboxylic acids as three-carbon insertion units is reported. This protocol enables the synthesis of isoquinolinedione- and indolo[2,1-a]isoquinolinone-fused benzocycloheptanones in moderate to good yields by the use of different aryl iodides, including alkene-tethered 2-iodobenzamides and 2-(2-iodophenyl)-1H-indoles. Notably, the approach achieves simultaneous construction of both six- and seven-membered rings via sequential intramolecular carbopalladation, C-H activation, and decarboxylation.