Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Biotechnol J ; 22(5): 1164-1176, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38070185

RESUMO

Soybean is a short-day plant that typically flowers earlier when exposed to short-day conditions. However, the identification of genes associated with earlier flowering time but without a yield penalty is rare. In this study, we conducted genome-wide association studies (GWAS) using two re-sequencing datasets that included 113 wild soybeans (G. soja) and 1192 cultivated soybeans (G. max), respectively, and simultaneously identified a candidate flowering gene, qFT13-3, which encodes a protein homologous to the pseudo-response regulator (PRR) transcription factor. We identified four major haplotypes of qFT13-3 in the natural population, with haplotype H4 (qFT13-3H4) being lost during domestication, while qFT13-3H1 underwent natural and artificial selection, increasing in proportion from 4.5% in G. soja to 43.8% in landrace and to 81.9% in improve cultivars. Notably, most cultivars harbouring qFT13-3H1 were located in high-latitude regions. Knockout of qFT13-3 accelerated flowering and maturity time under long-day conditions, indicating that qFT13-3 functions as a flowering inhibitor. Our results also showed that qFT13-3 directly downregulates the expression of GmELF3b-2 which is a component of the circadian clock evening complex. Field trials revealed that the qft13-3 mutants shorten the maturity period by 11 days without a concomitant penalty on yield. Collectively, qFT13-3 can be utilized for the breeding of high-yield cultivars with a short maturity time suitable for high latitudes.


Assuntos
Estudo de Associação Genômica Ampla , Glycine max , Glycine max/genética , Melhoramento Vegetal , Haplótipos/genética , Fotoperíodo , Flores/genética , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética
2.
Plant Physiol ; 192(4): 2737-2755, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37086480

RESUMO

Magnesium chelatase (MgCh) catalyzes the insertion of magnesium into protoporphyrin IX, a vital step in chlorophyll (Chl) biogenesis. The enzyme consists of 3 subunits, MgCh I subunit (CHLI), MgCh D subunit (CHLD), and MgCh H subunit (CHLH). The CHLI subunit is an ATPase that mediates catalysis. Previous studies on CHLI have mainly focused on model plant species, and its functions in other species have not been well described, especially with regard to leaf coloration and metabolism. In this study, we identified and characterized a CHLI mutant in strawberry species Fragaria pentaphylla. The mutant, noted as p240, exhibits yellow-green leaves and a low Chl level. RNA-Seq identified a mutation in the 186th amino acid of the CHLI subunit, a base conserved in most photosynthetic organisms. Transient transformation of wild-type CHLI into p240 leaves complemented the mutant phenotype. Further mutants generated from RNA-interference (RNAi) and CRISPR/Cas9 gene editing recapitulated the mutant phenotype. Notably, heterozygous chli mutants accumulated more Chl under low light conditions compared with high light conditions. Metabolite analysis of null mutants under high light conditions revealed substantial changes in both nitrogen and carbon metabolism. Further analysis indicated that mutation in Glu186 of CHLI does not affect its subcellular localization nor the interaction between CHLI and CHLD. However, intramolecular interactions were impaired, leading to reduced ATPase and MgCh activity. These findings demonstrate that Glu186 plays a key role in enzyme function, affecting leaf coloration via the formation of the hexameric ring itself, and that manipulation of CHLI may be a means to improve strawberry plant fitness and photosynthetic efficiency under low light conditions.


Assuntos
Fragaria , Liases , Mutação Puntual , Fragaria/genética , Fragaria/metabolismo , Liases/genética , Liases/metabolismo , Mutação/genética , Adenosina Trifosfatases/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Clorofila/metabolismo
3.
Plant Dis ; 108(1): 45-49, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37555725

RESUMO

Xanthomonas fragariae is classified as a quarantine pathogen by the European and Mediterranean Plant Protection Organization. It commonly induces typical angular leaf spot (ALS) symptoms in strawberry leaves. X. fragariae strains from China (YL19, SHAQP01, and YLX21) exhibit ALS symptoms in leaves and more severe symptoms of dry cavity rot in strawberry crowns. Conversely, strains from other countries do not cause severe dry cavity rot symptoms in strawberries. After employing multilocus sequence analysis (MLSA), average nucleotide identity (ANI), and amino acid identity (AAI), we determined that Chinese strains of X. fragariae are genetically distinct from other strains and can be considered a new subspecies. Subsequent analysis of 63 X. fragariae genomes published at NCBI using IPGA and EDGAR3.0 revealed the pan-genomic profile, with 1,680 shared genes present in all 63 strains, including 71 virulence-related genes. Additionally, we identified 123 genes exclusive to all the Chinese strains, encompassing 12 virulence-related genes. The qRT-PCR analysis demonstrated that the expression of XopD, XopG1, CE8, GT2, and GH121 out of 12 virulence-related genes of Chinese strains (YL19) exhibited a constant increase in the early stages (6, 24, 54, and 96 hours postinoculation [hpi]) of strawberry leaf infected by YL19. So, the presence of XopD, XopG1, CE8, GT2, and GH121 in Chinese strains may play important roles in the early infection process of Chinese strains. These findings offer novel insights into comprehending the population structure and variation in the pathogenic capacity of X. fragariae.


Assuntos
Genômica , Xanthomonas , Tipagem de Sequências Multilocus , Xanthomonas/genética
4.
Theor Appl Genet ; 136(3): 50, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36912956

RESUMO

KEY MESSAGE: IBD analysis clarified the dynamics of chromosomal recombination during the ZP pedigree breeding process and identified ten genomic regions resistant to SCN race3 combining association mapping. Soybean cyst nematode (SCN, Heterodera glycines Ichinohe) is one of the most devastating pathogens for soybean production worldwide. The cultivar Zhongpin03-5373 (ZP), derived from SCN-resistant progenitor parents, Peking, PI 437654 and Huipizhi Heidou, is an elite line with high resistance to SCN race3. In the current study, a pedigree variation map was generated for ZP and its ten progenitors using 3,025,264 high-quality SNPs identified from an average of 16.2 × re-sequencing for each genome. Through identity by decent (IBD) tracking, we showed the dynamic change of genome and detected important IBD fragments, which revealed the comprehensively artificial selection of important traits during ZP breeding process. A total of 2,353 IBD fragments related to SCN resistance including SCN-resistant genes rhg1, rhg4 and NSFRAN07 were identified based on the resistant-related genetic paths. Moreover, 23 genomic regions underlying resistance to SCN race3 were identified by genome-wide association study (GWAS) in 481 re-sequenced cultivated soybeans. Ten common loci were found by both IBD tracking and GWAS analysis. Haplotype analysis of 16 potential candidate genes suggested a causative SNP (C/T, - 1065) located in the promoter of Glyma.08G096500 and encoding a predicted TIFY5b-related protein on chr8 was highly correlated with SCN race3 resistance. Our results more thoroughly elucidated the dynamics of genomic fragments during ZP pedigree breeding and the genetic basis of SCN resistance, which will provide useful information for gene cloning and the development of resistant soybean cultivars using a marker-assisted selection approach.


Assuntos
Glycine max , Tylenchoidea , Animais , Glycine max/genética , Glycine max/metabolismo , Estudo de Associação Genômica Ampla/métodos , Melhoramento Vegetal , Genes de Plantas , Resistência à Doença/genética , Doenças das Plantas/genética
5.
Mol Breed ; 43(9): 71, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37663546

RESUMO

The phenotypic color of seeds is a complex agronomic trait and has economic and biological significance. The genetic control and molecular regulation mechanisms have been extensively studied. Here, we used a multi-omics strategy to explore the color formation in soybean seeds at a big data scale. We identified 13 large quantitative trait loci (QTL) for color with bulk segregating analysis in recombinant inbreeding lines. GWAS analysis of colors and decomposed attributes in 763 germplasms revealed associated SNP sites perfectly falling in five major QTL, suggesting inherited regulation on color during natural selection. Further transcriptomics analysis before and after color accumulation revealed 182 differentially expression genes (DEGs) in the five QTL, including known genes CHS, MYB, and F3'H involved in pigment accumulation. More DEGs with consistently upregulation or downregulation were identified as shared regulatory genes for two or more color formations while some DEGs were only for a specific color formation. For example, five upregulated DEGs in QTL qSC-3 were in flavonoid biosynthesis responsible for black and brown seed. The DEG (Glyma.08G085400) was identified in the purple seed only, which encodes gibberellin 2-beta-dioxygenase in the metabolism of colorful terpenoids. The candidate genes are involved in flavonoid biosynthesis, transcription factor regulation, gibberellin and terpenoid metabolism, photosynthesis, ascorbate and aldarate metabolism, and lipid metabolism. Seven differentially expressed transcription factors were also speculated that may regulate color formation, including a known MYB. The finds expand QTL and gene candidates for color formation, which could guide to breed better cultivars with designed colors. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01414-z.

6.
Mol Breed ; 43(5): 37, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37312749

RESUMO

The genetic base of soybean cultivars (Glycine max (L.) Merr.) has been narrowed through selective domestication and specific breeding improvement, similar to other crops. This presents challenges in breeding new cultivars with improved yield and quality, reduced adaptability to climate change, and increased susceptibility to diseases. On the other hand, the vast collection of soybean germplasms offers a potential source of genetic variations to address those challenges, but it has yet to be fully leveraged. In recent decades, rapidly improved high-throughput genotyping technologies have accelerated the harness of elite variations in soybean germplasm and provided the important information for solving the problem of a narrowed genetic base in breeding. In this review, we will overview the situation of maintenance and utilization of soybean germplasms, various solutions provided for different needs in terms of the number of molecular markers, and the omics-based high-throughput strategies that have been used or can be used to identify elite alleles. We will also provide an overall genetic information generated from soybean germplasms in yield, quality traits, and pest resistance for molecular breeding.

7.
BMC Pediatr ; 23(1): 420, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620840

RESUMO

BACKGROUND: Hepatocellular adenomas (HCAs) are rare benign tumors of the liver that occur predominantly in women taking oral contraceptives. In children, HCAs comprise < 5% of hepatic tumors. We report a case of HCAs in a 7-year-old girl with estrogen and glucose imbalance. CASE PRESENTATION: A 7-year-old girl was presented to our hospital with bilateral breast enlargement for 2 months, polydipsia, polyuria, polyphagia, hyperglycemia, and significant weight gain. Computed tomography (CT) showed a 7.2 cm×6.9 cm×5.3 cm round-shaped mass in the left inner lobe of the liver, ovarian ultrasound showed multiple follicles in the ovaries bilaterally, and cranial magnetic resonance imaging (MRI) showed an enlarged superior pituitary. Hematological and biochemical results were as follows: fasting glucose was 19.7 mmol/L, estradiol was 122.9 pmol/L, follicle-stimulating hormone 10.81 IU/L, luteinizing hormone 10.99 IU/L, insulin-like growth factor 1,513 ng/mL, glutamine aminotransferase 86 U/L, and alkaline phosphatase 362 U/L. Thyroid functions, methemoglobin, fetal protein, carcinoembryonic antigen, and chorionic gonadotropin were normal. The patient had a complete surgical resection of the liver tumor, and the postoperative histopathological diagnosis was HCAs. After the surgery, insulin was injected and the glucose levels were stable. During the 36-month follow-up period, neither tumor recurrence nor significant abnormalities were detected using color Doppler ultrasound of the liver. The child's precocious puberty is currently under control. CONCLUSIONS: HCAs are particularly rare in children with liver tumors, and risk factors for the development of HCAs in children include sex hormone imbalance, obesity, Fanconi anemia (FA), glycogen storage diseases (GSDs) type I, III, and IV, galactosemia, immunodeficiency, congenital portosystemic shunts (CPSS), cardiac hepatopathy status-post Fontan procedure, Hurler syndrome, familial adenomatous polyposis, germline HNF1A mutations, and maturity-onset diabetes of the young type 3. Most HCAs are detected during a physical examination without clinical symptoms, and some patients may present with symptoms such as abdominal pain, abdominal distension, and abdominal masse. Serum liver function tests can show increased alkaline phosphatase (ALP) and γ- glutamyl transferase (GT), whereas α-Fetoprofein (AFP) levels are normal. The definitive diagnosis relies mainly on histopathological examination. Because HCAs can rupture and bleed and become malignant. Early surgical treatment is recommended after detection.


Assuntos
Adenoma de Células Hepáticas , Neoplasias Hepáticas , Criança , Humanos , Feminino , Adenoma de Células Hepáticas/diagnóstico , Adenoma de Células Hepáticas/cirurgia , Fosfatase Alcalina , Recidiva Local de Neoplasia , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/cirurgia
8.
Plant Dis ; 107(11): 3542-3552, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37194211

RESUMO

Xanthomonas fragariae usually causes angular leaf spot (ALS) of strawberry, a serious bacterial disease in many strawberry-producing regions worldwide. Recently, a new strain of X. fragariae (YL19) was isolated from strawberry in China and has been shown to cause dry cavity rot in strawberry crown. In this study, we constructed a green fluorescent protein (GFP)-labeled Xf YL19 (YL19-GFP) to visualize the infection process and pathogen colonization in strawberries. Foliar inoculation of YL19-GFP resulted in the pathogen migrating from the leaves to the crown, whereas dip inoculation of wounded crowns or roots resulted in the migration of bacteria from the crowns or roots to the leaves. These two invasion types both resulted in the systematic spread of YL19-GFP, but inoculation of a wounded crown was more harmful to the strawberry plant than foliar inoculation. Results increased our understanding of the systemic invasion of X. fragariae, and the resultant crown cavity caused by Xf YL19.


Assuntos
Fragaria , Xanthomonas , Fragaria/microbiologia , China
9.
J Integr Plant Biol ; 65(1): 117-132, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36218273

RESUMO

Advances in plant phenotyping technologies are dramatically reducing the marginal costs of collecting multiple phenotypic measurements across several time points. Yet, most current approaches and best statistical practices implemented to link genetic and phenotypic variation in plants have been developed in an era of single-time-point data. Here, we used time-series phenotypic data collected with an unmanned aircraft system for a large panel of soybean (Glycine max (L.) Merr.) varieties to identify previously uncharacterized loci. Specifically, we focused on the dissection of canopy coverage (CC) variation from this rich data set. We also inferred the speed of canopy closure, an additional dimension of CC, from the time-series data, as it may represent an important trait for weed control. Genome-wide association studies (GWASs) identified 35 loci exhibiting dynamic associations with CC across developmental stages. The time-series data enabled the identification of 10 known flowering time and plant height quantitative trait loci (QTLs) detected in previous studies of adult plants and the identification of novel QTLs influencing CC. These novel QTLs were disproportionately likely to act earlier in development, which may explain why they were missed in previous single-time-point studies. Moreover, this time-series data set contributed to the high accuracy of the GWASs, which we evaluated by permutation tests, as evidenced by the repeated identification of loci across multiple time points. Two novel loci showed evidence of adaptive selection during domestication, with different genotypes/haplotypes favored in different geographic regions. In summary, the time-series data, with soybean CC as an example, improved the accuracy and statistical power to dissect the genetic basis of traits and offered a promising opportunity for crop breeding with quantitative growth curves.


Assuntos
Estudo de Associação Genômica Ampla , Glycine max , Mapeamento Cromossômico , Glycine max/genética , Fatores de Tempo , Melhoramento Vegetal , Fenótipo , Polimorfismo de Nucleotídeo Único
10.
Theor Appl Genet ; 135(11): 4095-4121, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36239765

RESUMO

KEY MESSAGE: Genetic resources contributes to the sustainable protein production in soybean. Soybean is an important crop for food, oil, and forage and is the main source of edible vegetable oil and vegetable protein. It plays an important role in maintaining balanced dietary nutrients for human health. The soybean protein content is a quantitative trait mainly controlled by gene additive effects and is usually negatively correlated with agronomic traits such as the oil content and yield. The selection of soybean varieties with high protein content and high yield to secure sustainable protein production is one of the difficulties in soybean breeding. The abundant genetic variation of soybean germplasm resources is the basis for overcoming the obstacles in breeding for soybean varieties with high yield and high protein content. Soybean has been cultivated for more than 5000 years and has spread from China to other parts of the world. The rich genetic resources play an important role in promoting the sustainable production of soybean protein worldwide. In this paper, the origin and spread of soybean and the current status of soybean production are reviewed; the genetic characteristics of soybean protein and the distribution of resources are expounded based on phenotypes; the discovery of soybean seed protein-related genes as well as transcriptomic, metabolomic, and proteomic studies in soybean are elaborated; the creation and utilization of high-protein germplasm resources are introduced; and the prospect of high-protein soybean breeding is described.


Assuntos
Glycine max , Proteínas de Soja , Humanos , Glycine max/genética , Proteômica , China
11.
J Integr Plant Biol ; 64(3): 632-648, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34914170

RESUMO

Innovations in genomics have enabled the development of low-cost, high-resolution, single nucleotide polymorphism (SNP) genotyping arrays that accelerate breeding progress and support basic research in crop science. Here, we developed and validated the SoySNP618K array (618,888 SNPs) for the important crop soybean. The SNPs were selected from whole-genome resequencing data containing 2,214 diverse soybean accessions; 29.34% of the SNPs mapped to genic regions representing 86.85% of the 56,044 annotated high-confidence genes. Identity-by-state analyses of 318 soybeans revealed 17 redundant accessions, highlighting the potential of the SoySNP618K array in supporting gene bank management. The patterns of population stratification and genomic regions enriched through domestication were highly consistent with previous findings based on resequencing data, suggesting that the ascertainment bias in the SoySNP618K array was largely compensated for. Genome-wide association mapping in combination with reported quantitative trait loci enabled fine-mapping of genes known to influence flowering time, E2 and GmPRR3b, and of a new candidate gene, GmVIP5. Moreover, genomic prediction of flowering and maturity time in 502 recombinant inbred lines was highly accurate (>0.65). Thus, the SoySNP618K array is a valuable genomic tool that can be used to address many questions in applied breeding, germplasm management, and basic crop research.


Assuntos
Glycine max , Polimorfismo de Nucleotídeo Único , Genoma de Planta/genética , Estudo de Associação Genômica Ampla , Genômica , Genótipo , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único/genética , Glycine max/genética
12.
Mol Psychiatry ; 25(5): 977-992, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31142818

RESUMO

Stressful life events induce abnormalities in emotional and cognitive behaviour. The endogenous opioid system plays an essential role in stress adaptation and coping strategies. In particular, the µ-opioid receptor (µR), one of the major opioid receptors, strongly influences memory processing in that alterations in µR signalling are associated with various neuropsychiatric disorders. However, it remains unclear whether µR signalling contributes to memory impairments induced by acute stress. Here, we utilized pharmacological methods and cell-type-selective/non-cell-type-selective µR depletion approaches combined with behavioural tests, biochemical analyses, and in vitro electrophysiological recordings to investigate the role of hippocampal µR signalling in memory-retrieval impairment induced by acute elevated platform (EP) stress in mice. Biochemical and molecular analyses revealed that hippocampal µRs were significantly activated during acute stress. Blockage of hippocampal µRs, non-selective deletion of µRs or selective deletion of µRs on GABAergic neurons (µRGABA) reversed EP-stress-induced impairment of memory retrieval, with no effect on the elevation of serum corticosterone after stress. Electrophysiological results demonstrated that stress depressed hippocampal GABAergic synaptic transmission to CA1 pyramidal neurons, thereby leading to excitation/inhibition (E/I) imbalance in a µRGABA-dependent manner. Pharmaceutically enhancing hippocampal GABAA receptor-mediated inhibitory currents in stressed mice restored their memory retrieval, whereas inhibiting those currents in the unstressed mice mimicked the stress-induced impairment of memory retrieval. Our findings reveal a novel pathway in which endogenous opioids recruited by acute stress predominantly activate µRGABA to depress GABAergic inhibitory effects on CA1 pyramidal neurons, which subsequently alters the E/I balance in the hippocampus and results in impairment of memory retrieval.


Assuntos
Neurônios GABAérgicos/metabolismo , Hipocampo/metabolismo , Hipocampo/patologia , Transtornos da Memória/etiologia , Transtornos da Memória/fisiopatologia , Receptores Opioides mu/metabolismo , Estresse Psicológico/complicações , Estresse Psicológico/fisiopatologia , Animais , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
13.
Mol Biol Rep ; 48(11): 7351-7360, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34676504

RESUMO

BACKGROUND: Glyphosate is a broad-spectrum, non-selective systemic herbicide. Introduction of glyphosate tolerance genes such as EPSPS or detoxification genes such as GAT can confer glyphosate tolerance on plants. Our previous study revealed that co-expression of EPSPS and GAT genes conferred higher glyphosate tolerance without "yellow flashing". However, the plant response to glyphosate at the transcriptional level was not investigated. METHODS AND RESULTS: To investigate the glyphosate tolerance mechanism, RNA-seq was conducted using four soybean genotypes, including two non-transgenic (NT) soybeans, ZH10 and MD12, and two GM soybeans, HJ698 and ZH10-6. Differentially expressed genes (DEGs) were identified in these soybeans before and after glyphosate treatment. Similar response to glyphosate in the two NT soybeans and the different effects of glyphosate on the two GM soybeans were identified. As treatment time was prolonged, the expression level of some DEGs involved in shikimate biosynthetic pathway and herbicide targeted cross-pathways was increased or declined continuously in NT soybeans, and altered slightly in HJ698. However, the expression level of some DEGs was altered in ZH10-6 at 12 hpt, while similar expression level of some DEGs involved in shikimate biosynthetic pathway and herbicide targeted cross-pathways was observed in ZH10-6 at 0 hpt and 72 hpt. These observations likely explain the higher glyphosate tolerance in ZH10-6 than in HJ698 and NT soybeans. CONCLUSIONS: These results suggested that GAT and EPSPS genes together play a crucial role in response to glyphosate, the GAT gene may work at the early stage of glyphosate exposure, whereas the EPSPS gene may be activated after the uptake of glyphosate by plants. These findings will provide valuable insight for the molecular basis underlying glyphosate tolerance or glyphosate detoxication.


Assuntos
Regulação da Expressão Gênica de Plantas , Glycine max/genética , Glicina/análogos & derivados , Resistência a Herbicidas/genética , Glicina/farmacologia , Plantas Geneticamente Modificadas , RNA-Seq , Glycine max/efeitos dos fármacos , Glycine max/metabolismo , Glycine max/fisiologia , Glifosato
14.
Plant Biotechnol J ; 18(2): 389-401, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31278885

RESUMO

Landraces often contain genetic diversity that has been lost in modern cultivars, including alleles that confer enhanced local adaptation. To comprehensively identify loci associated with adaptive traits in soya bean landraces, for example flowering time, a population of 1938 diverse landraces and 97 accessions of the wild progenitor of cultivated soya bean, Glycine soja was genotyped using tGBS® . Based on 99 085 high-quality SNPs, landraces were classified into three sub-populations which exhibit geographical genetic differentiation. Clustering was inferred from STRUCTURE, principal component analyses and neighbour-joining tree analyses. Using phenotypic data collected at two locations separated by 10 degrees of latitude, 17 trait-associated SNPs (TASs) for flowering time were identified, including a stable locus Chr12:5914898 and previously undetected candidate QTL/genes for flowering time in the vicinity of the previously cloned flowering genes, E1 and E2. Using passport data associated with the collection sites of the landraces, 27 SNPs associated with adaptation to three bioclimatic variables (temperature, daylength, and precipitation) were identified. A series of candidate flowering genes were detected within linkage disequilibrium (LD) blocks surrounding 12 bioclimatic TASs. Nine of these TASs exhibit significant differences in flowering time between alleles within one or more of the three individual sub-populations. Signals of selection during domestication and/or subsequent landrace diversification and adaptation were detected at 38 of the 44 flowering and bioclimatic TASs. Hence, this study lays the groundwork to begin breeding for novel environments predicted to arise following global climate change.


Assuntos
Adaptação Fisiológica , Genes de Plantas , Estudo de Associação Genômica Ampla , Glycine max , Adaptação Fisiológica/genética , Alelos , Genes de Plantas/genética , Genótipo , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único , Glycine max/genética
15.
Mol Genet Genomics ; 293(3): 623-633, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29280001

RESUMO

Gene-based molecular markers are increasingly used in crop breeding programs for marker-assisted selection. However, identification of genetic variants associated with important agronomic traits has remained a difficult task in soybean. RNA-Seq provides an efficient way, other than assessing global expression variations of coding genes, to discover gene-based SNPs at the whole genome level. In this study, RNA isolated from four soybean accessions each with three replications was subjected to high-throughput sequencing and a range of 44.2-65.9 million paired-end reads were generated for each library. A total of 75,209 SNPs were identified among different genotypes after combination of replications, 89.1% of which were located in expressed regions and 27.0% resulted in amino acid changes. GO enrichment analysis revealed that most significant enriched genes with nonsynonymous SNPs were involved in ribonucleotide binding or catalytic activity. Of 22 SNPs subjected to PCR amplification and Sanger sequencing, all of them were validated. To test the utility of identified SNPs, these validated SNPs were also assessed by genotyping a relative large population with 393 wild and cultivated soybean accessions. These SNPs identified by RNA-Seq provide a useful resource for genetic and genomic studies of soybean. Moreover, the collection of nonsynonymous SNPs annotated with their predicted functional effects also provides a valuable asset for further discovery of genes, identification of gene variants, and development of functional markers.


Assuntos
Perfilação da Expressão Gênica/métodos , Glycine max/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Polimorfismo de Nucleotídeo Único , Genótipo , Proteínas de Plantas/genética , Análise de Sequência de RNA/métodos , Glycine max/classificação
17.
Pestic Biochem Physiol ; 140: 65-68, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28755696

RESUMO

Glyphosate is a widely used broad spectrum herbicide; however, this limits its use once crops are planted. If glyphosate-resistant crops are grown, glyphosate can be used for weed control in crops. While several glyphosate resistance genes are used in commercial glyphosate tolerant crops, there is interest in identifying additional genes for glyphosate tolerance. This research constructed a high-quality cDNA library form the glyphosate-resistant fungus Aspergillus oryzae RIB40 to identify genes that may confer resistance to glyphosate. Using a medium containing glyphosate (120mM), we screened several clones from the library. Based on a nucleotide sequence analysis, we identified a gene of unknown function (GenBank accession number: XM_001826835.2) that encoded a hypothetical 344-amino acid protein. The gene was named MFS40. Its ORF was amplified to construct an expression vector, pGEX-4T-1-MFS40, to express the protein in Escherichia coli BL21. The gene conferred glyphosate tolerance to E. coli ER2799 cells.


Assuntos
Antifúngicos/farmacologia , Aspergillus oryzae/efeitos dos fármacos , Aspergillus oryzae/metabolismo , Farmacorresistência Fúngica/genética , Glicina/análogos & derivados , Aspergillus oryzae/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Regulação Fúngica da Expressão Gênica , Biblioteca Gênica , Genes Fúngicos , Glicina/farmacologia , Glifosato
18.
BMC Plant Biol ; 16: 58, 2016 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-26935840

RESUMO

BACKGROUND: Leucine-rich repeat receptor-like kinases (LRR-RLKs) constitute the largest subfamily of receptor-like kinases in plant. A number of reports have demonstrated that plant LRR-RLKs play important roles in growth, development, differentiation, and stress responses. However, no comprehensive analysis of this gene family has been carried out in legume species. RESULTS: Based on the principles of sequence similarity and domain conservation, a total of 467 LRR-RLK genes were identified in soybean genome. The GmLRR-RLKs are non-randomly distributed across all 20 chromosomes of soybean and about 73.3 % of them are located in segmental duplicated regions. The analysis of synonymous substitutions for putative paralogous gene pairs indicated that most of these gene pairs resulted from segmental duplications in soybean genome. Furthermore, the exon/intron organization, motif composition and arrangements were considerably conserved among members of the same groups or subgroups in the constructed phylogenetic tree. The close phylogenetic relationship between soybean LRR-RLK genes with identified Arabidopsis genes in the same group also provided insight into their putative functions. Expression profiling analysis of GmLRR-RLKs suggested that they appeared to be differentially expressed among different tissues and some of duplicated genes exhibited divergent expression patterns. In addition, artificial selected GmLRR-RLKs were also identified by comparing the SNPs between wild and cultivated soybeans and 17 genes were detected in regions previously reported to contain domestication-related QTLs. CONCLUSIONS: Comprehensive and evolutionary analysis of soybean LRR-RLK gene family was performed at whole genome level. The data provides valuable tools in future efforts to identify functional divergence of this gene family and gene diversity among different genotypes in legume species.


Assuntos
Evolução Molecular , Genoma de Planta , Glycine max/genética , Proteínas Quinases/genética , Proteínas/genética , Arabidopsis/enzimologia , Arabidopsis/genética , Sequência Conservada , Duplicação Gênica , Proteínas de Repetições Ricas em Leucina , Família Multigênica , Motivos de Nucleotídeos , Filogenia , Proteínas Quinases/classificação , Glycine max/enzimologia , Transcriptoma
19.
BMC Genomics ; 16: 841, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26494482

RESUMO

BACKGROUND: The relative abundance of five dominant fatty acids (FAs) (palmitic, stearic, oleic, linoleic and linolenic acids) is a major factor determining seed quality in soybean. METHODS: To clarify the currently poorly understood genetic architecture of FAs in soybean, targeted association analysis was conducted in 421 diverse accessions phenotyped in three environments and genotyped using 1536 pre-selected SNPs. RESULTS: The population of 421 soybean accessions displayed significant genetic variation for each FA. Analysis of the molecular data revealed three subpopulations, which reflected a trend depending on latitude of cultivation. A total of 37 significant (p < 0.01) associations with FAs were identified by association mapping analysis. These associations were represented by 33 SNPs (occurring in 32 annotated genes); another four SNPs had a significant association with two different FAs due to pleiotropic interactions. The most significant associations were cross-verified by known genes/QTL or consistency across cultivation year and subpopulations. CONCLUSION: The detected marker-trait associations represent a first important step towards the implementation of molecular-marker-based selection of FA composition with the potential to substantially improve the seed quality of soybean with benefits for human health and for food processing.


Assuntos
Ácidos Graxos/genética , Estudos de Associação Genética , Glycine max/genética , Sementes/genética , Mapeamento Cromossômico , Ácidos Graxos/biossíntese , Humanos , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Glycine max/crescimento & desenvolvimento , Glycine max/metabolismo
20.
BMC Genomics ; 16: 467, 2015 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-26084707

RESUMO

BACKGROUND: Single-stranded non-protein coding small RNAs, 18-25 nucleotides in length, are ubiquitous throughout plants genomes and are involved in post-transcriptional gene regulation. Several types of DNA markers have been reported for the detection of genetic diversity or sequence variation in soybean, one of the most important legume crops in worldwide for seed protein and oil content. Recently, with the available of public genomic databases, there has been a shift from the labor-intensive development of PCR-based markers to sequence-based genotyping and the development of functional markers within genes, often coupled with the use of RNA information. But thus far miRNA-based markers have been only developed in rice and tobacco. Here we report the first functional molecular miRNA marker, miR1511-InDel, in soybean for a specific single copy locus used to assess genetic variation in domesticated soybean (Glycine max [L.] Merr) and its wild progenitor (Glycine soja Sieb. & Zucc.). RESULTS: We genotyped a total of 1,669 accessions of domesticated soybean (G. max) and its wild progenitor G. soja which are native throughout the China and parts of Korea, Japan and Russia. The results indicate that the miR1511 locus is distributed in cultivated soybean and has three alleles in annual wild soybean. Based on this result, we proposed that miR-InDel marker technology can be used to assess genetic variation. The inclusion of geo-reference data with miR1511-InDel marker data corroborated that accessions from the Yellow River basin (Huanghuai) exhibited high genetic diversity which provides more molecular evidence for gene diversity in annual wild soybean and domestication of soybean. CONCLUSIONS: These results provide evidence for the use of RNA marker, miRNA1511-InDel, as a soybean-specific functional maker for the study of genetic diversity, genotyping of germplasm and evolution studies. This is also the first report of functional marker developed from soybean miRNA located within the functional region of pre-miRNA1511.


Assuntos
Marcadores Genéticos/genética , Glycine max/genética , Mutação INDEL/genética , MicroRNAs/genética , Polimorfismo de Nucleotídeo Único/genética , Alelos , China , Genoma de Planta/genética , Genótipo , Japão , Filogenia , República da Coreia , Federação Russa , Análise de Sequência de DNA/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA