Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3581, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678024

RESUMO

Immune checkpoint blockade therapy aims to activate the immune system to eliminate cancer cells. However, clinical benefits are only recorded in a subset of patients. Here, we leverage genome-wide CRISPR/Cas9 screens in a Tumor-Immune co-Culture System focusing on triple-negative breast cancer (TNBC). We reveal that NEDD8 loss in cancer cells causes a vulnerability to nivolumab (anti-PD-1). Genetic deletion of NEDD8 only delays cell division initially but cell proliferation is unaffected after recovery. Since the NEDD8 gene is commonly essential, we validate this observation with additional CRISPR screens and uncover enhanced immunogenicity in NEDD8 deficient cells using proteomics. In female immunocompetent mice, PD-1 blockade lacks efficacy against established EO771 breast cancer tumors. In contrast, we observe tumor regression mediated by CD8+ T cells against Nedd8 deficient EO771 tumors after PD-1 blockade. In essence, we provide evidence that NEDD8 is conditionally essential in TNBC and presents as a synergistic drug target for PD-1/L1 blockade therapy.


Assuntos
Inibidores de Checkpoint Imunológico , Proteína NEDD8 , Neoplasias de Mama Triplo Negativas , Animais , Feminino , Humanos , Camundongos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sistemas CRISPR-Cas , Inibidores de Checkpoint Imunológico/farmacologia , Proteína NEDD8/metabolismo , Proteína NEDD8/genética , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
2.
J Clin Invest ; 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39255035

RESUMO

Childhood neuroblastoma with MYCN-amplification is classified as high-risk and often relapses after intensive treatments. Immune checkpoint blockade therapy against the PD-1/L1 axis shows limited efficacy in neuroblastoma patients and the cancer intrinsic immune regulatory network is poorly understood. Here, we leverage genome-wide CRISPR/Cas9 screens and identify H2AFY as a resistance gene to the clinically approved PD-1 blocking antibody, nivolumab. Analysis of single-cell RNA sequencing datasets reveals that H2AFY mRNA is enriched in adrenergic cancer cells and is associated with worse patient survival. Genetic deletion of H2afy in MYCN-driven neuroblastoma cells reverts in vivo resistance to PD-1 blockade by eliciting activation of the adaptive and innate immunity. Mapping of the epigenetic and translational landscape demonstrates that H2afy deletion promotes cell transition to a mesenchymal-like state. With a multi-omics approach, we uncover H2AFY-associated genes that are functionally relevant and prognostic in patients. Altogether, our study elucidates the role of H2AFY as an epigenetic gatekeeper for cell states and immunogenicity in high-risk neuroblastoma.

3.
J Clin Invest ; 133(7)2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36757800

RESUMO

Inflammatory mediators released by cancer cells promote the induction of immune suppression and tolerance in myeloid cells. IL-1 receptor-associated kinase-3 (IRAK3) is a pseudokinase that inhibits IL-1/TLR signaling, but its role in patients treated with immune checkpoint blockade (ICB) therapy remains unclear. Using RNA-Seq data from the IMvigor210 trial, we found that tumors with high IRAK3 expressions showed enriched antiinflammatory pathways and worse clinical response to ICB therapy. Upon IRAK3 protein deletion with CRISPR/Cas9, primary human monocytes displayed altered global protein expression and phosphorylation in quantitative proteomics and released more proinflammatory cytokines in response to stimulation. Bone marrow-derived macrophages from an IRAK3 CRISPR KO mouse model demonstrated a proinflammatory phenotype and enhanced sensitivity to TLR agonists compared with WT cells. IRAK3 deficiency delayed the growth of carcinogen-induced and oncogene-driven murine cancer cells and induced enhanced activation in myeloid cells and T cells. Upon ICB treatment, IRAK3-KO mice showed enrichment of TCF1+PD-1+ stem-like memory CD8+ T cells and resulted in superior growth inhibition of immunologically cold tumors in vivo. Altogether, our study demonstrated what we believe to be a novel cancer-driven immune tolerance program controlled by IRAK3 in humans and mice and proposed its suitability as an immunotherapy target.


Assuntos
Quinases Associadas a Receptores de Interleucina-1 , Neoplasias , Humanos , Animais , Camundongos , Quinases Associadas a Receptores de Interleucina-1/genética , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Células Mieloides/patologia , Macrófagos/metabolismo , Imunoterapia , Neoplasias/genética , Neoplasias/terapia , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA