Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Sensors (Basel) ; 17(1)2016 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-28025571

RESUMO

This paper proposes a new technique for real-time single cell stiffness measurement using lead zirconate titanate (PZT)-integrated buckling nanoneedles. The PZT and the buckling part of the nanoneedle have been modelled and validated using the ABAQUS software. The two parts are integrated together to function as a single unit. After calibration, the stiffness, Young's modulus, Poisson's ratio and sensitivity of the PZT-integrated buckling nanoneedle have been determined to be 0.7100 N·m-1, 123.4700 GPa, 0.3000 and 0.0693 V·m·N-1, respectively. Three Saccharomyces cerevisiae cells have been modelled and validated based on compression tests. The average global stiffness and Young's modulus of the cells are determined to be 10.8867 ± 0.0094 N·m-1 and 110.7033 ± 0.0081 MPa, respectively. The nanoneedle and the cell have been assembled to measure the local stiffness of the single Saccharomyces cerevisiae cells The local stiffness, Young's modulus and PZT output voltage of the three different size Saccharomyces cerevisiae have been determined at different environmental conditions. We investigated that, at low temperature the stiffness value is low to adapt to the change in the environmental condition. As a result, Saccharomyces cerevisiae becomes vulnerable to viral and bacterial attacks. Therefore, the proposed technique will serve as a quick and accurate process to diagnose diseases at early stage in a cell for effective treatment.


Assuntos
Análise de Elementos Finitos , Chumbo/química , Nanoestruturas/química , Titânio/química , Zircônio/química , Módulo de Elasticidade/efeitos dos fármacos , Nanoestruturas/efeitos adversos , Saccharomyces cerevisiae
2.
Materials (Basel) ; 16(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36676617

RESUMO

The methods of additive manufacturing of anatomical models are widely used in medical practice, including physician support, education and planning of treatment procedures. The aim of the review was to identify the area of additive manufacturing and the application of anatomical models, imitating both soft and hard tissue. The paper outlines the most commonly used methodologies, from medical imaging to obtaining a functional physical model. The materials used to imitate specific organs and tissues, and the related technologies used to produce, them are included. The study covers publications in English, published by the end of 2022 and included in the Scopus. The obtained results emphasise the growing popularity of the issue, especially in the areas related to the attempt to imitate soft tissues with the use of low-cost 3D printing and plastic casting techniques.

3.
IEEE Trans Nanobioscience ; 20(4): 426-435, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34152989

RESUMO

Bacterial populations are promising candidates for the development of the receiver and transmitter nanomachines for molecular communication (MC). A bacterial receiver is required to uptake the information molecules and produce the detectable molecules following a regulation mechanism. We have constructed a novel bacterial MC receiver using an inducible bacterial L-rhamnose-regulating operon. The proposed bacterial receiver produces green fluorescent protein (GFP) in response to the L-rhamnose information molecules following a quite fast regulation mechanism. To fabricate the receiver, the bacterial population has been transformed using a plasmid harboring L-rhamnose operon genes and gene expressing GFP in a microfluidic environment. We mathematically model the reception process of information molecules and characterize the model parameters by comparing the simulation results of the model in the employed microfluidic environment and the data obtained from the experimental setup. Based on the experimental results, the receiver is able to switch between different low and high concentrations. This work paves the way for the fabrication and modeling of any bacterial operon-based receiver with any proteins rather than GFP. Further, our experimental results indicate that the proposed bacterial receiver has a faster response to information molecules compared to the previous bacterial receiver based on the quorum sensing (QS) process.


Assuntos
Microfluídica , Ramnose , Proteínas de Bactérias/genética , Óperon/genética , Percepção de Quorum/genética
4.
Biofabrication ; 13(4)2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34265755

RESUMO

Currentin vivoandin vitromodels fail to accurately recapitulate the human heart microenvironment for biomedical applications. This study explores the use of cardiac spheroids (CSs) to biofabricate advancedin vitromodels of the human heart. CSs were created from human cardiac myocytes, fibroblasts and endothelial cells (ECs), mixed within optimal alginate/gelatin hydrogels and then bioprinted on a microelectrode plate for drug testing. Bioprinted CSs maintained their structure and viability for at least 30 d after printing. Vascular endothelial growth factor (VEGF) promoted EC branching from CSs within hydrogels. Alginate/gelatin-based hydrogels enabled spheroids fusion, which was further facilitated by addition of VEGF. Bioprinted CSs contracted spontaneously and under stimulation, allowing to record contractile and electrical signals on the microelectrode plates for industrial applications. Taken together, our findings indicate that bioprinted CSs can be used to biofabricate human heart tissues for long termin vitrotesting. This has the potential to be used to study biochemical, physiological and pharmacological features of human heart tissue.


Assuntos
Bioimpressão , Células Endoteliais , Humanos , Hidrogéis , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais , Fator A de Crescimento do Endotélio Vascular
5.
Scanning ; 2017: 8393578, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29109826

RESUMO

The preparation and observations of spheroplast W303 cells are described with Environmental Scanning Electron Microscope (ESEM). The spheroplasting conversion was successfully confirmed qualitatively, by the evaluation of the morphological change between the normal W303 cells and the spheroplast W303 cells, and quantitatively, by determining the spheroplast conversion percentage based on the OD800 absorbance data. From the optical microscope observations as expected, the normal cells had an oval shape whereas spheroplast cells resemble a spherical shape. This was also confirmed under four different mediums, that is, yeast peptone-dextrose (YPD), sterile water, sorbitol-EDTA-sodium citrate buffer (SCE), and sorbitol-Tris-Hcl-CaCl2 (CaS). It was also observed that the SCE and CaS mediums had a higher number of spheroplast cells as compared to the YPD and sterile water mediums. The OD800 absorbance data also showed that the whole W303 cells were fully converted to the spheroplast cells after about 15 minutes. The observations of the normal and the spheroplast W303 cells were then performed under an environmental scanning electron microscope (ESEM). The normal cells showed a smooth cell surface whereas the spheroplast cells had a bleb-like surface after the loss of its integrity when removing the cell wall.


Assuntos
Microscopia Eletrônica de Varredura , Esferoplastos/citologia , Propriedades de Superfície , Leveduras/citologia , Meios de Cultura/química , Microscopia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA