Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Transl Med ; 22(1): 375, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643121

RESUMO

Maladaptive cardiac hypertrophy contributes to the development of heart failure (HF). The oxidoreductase Selenoprotein T (SELENOT) emerged as a key regulator during rat cardiogenesis and acute cardiac protection. However, its action in chronic settings of cardiac dysfunction is not understood. Here, we investigated the role of SELENOT in the pathophysiology of HF: (i) by designing a small peptide (PSELT), recapitulating SELENOT activity via the redox site, and assessed its beneficial action in a preclinical model of HF [aged spontaneously hypertensive heart failure (SHHF) rats] and against isoproterenol (ISO)-induced hypertrophy in rat ventricular H9c2 and adult human AC16 cardiomyocytes; (ii) by evaluating the SELENOT intra-cardiomyocyte production and secretion under hypertrophied stimulation. Results showed that PSELT attenuated systemic inflammation, lipopolysaccharide (LPS)-induced macrophage M1 polarization, myocardial injury, and the severe ultrastructural alterations, while counteracting key mediators of cardiac fibrosis, aging, and DNA damage and restoring desmin downregulation and SELENOT upregulation in the failing hearts. In the hemodynamic assessment, PSELT improved the contractile impairment at baseline and following ischemia/reperfusion injury, and reduced infarct size in normal and failing hearts. At cellular level, PSELT counteracted ISO-mediated hypertrophy and ultrastructural alterations through its redox motif, while mitigating ISO-triggered SELENOT intracellular production and secretion, a phenomenon that presumably reflects the extent of cell damage. Altogether, these results indicate that SELENOT could represent a novel sensor of hypertrophied cardiomyocytes and a potential PSELT-based new therapeutic approach in myocardial hypertrophy and HF.


Assuntos
Insuficiência Cardíaca , Selenoproteínas , Tiorredoxina Dissulfeto Redutase , Adulto , Idoso , Animais , Humanos , Ratos , Insuficiência Cardíaca/metabolismo , Hipertrofia/metabolismo , Isoproterenol/metabolismo , Isoproterenol/farmacologia , Miócitos Cardíacos/metabolismo , Oxirredução , Selenoproteínas/metabolismo , Tiorredoxina Dissulfeto Redutase/metabolismo
2.
Int J Mol Sci ; 25(10)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38791274

RESUMO

Numerous animal models have demonstrated that caloric restriction (CR) is an excellent tool to delay aging and increase the quality of life, likely because it counteracts age-induced oxidative stress and inflammation. The aging process can affect the prostate in three ways: the onset of benign prostatic hyperplasia, prostatitis, and prostate cancer. In this study, we used 14 aged male Sprague Dawley rats, which were allocated into two groups, at the age of 18 months old. One group was fed ad libitum (a normal diet (ND)), and the other group followed a caloric restriction diet with a 60% decrease in intake. The rats were sacrificed at the age of 24 months. By immunohistochemical (IHC) and Western blot (WB) analyses, we studied the variations between the two groups in immune inflammation and fibrosis-related markers in aged prostate tissues. Morphological examinations showed lower levels of prostatic hyperplasia and fibrosis in the CR rats vs. the ND rats. The IHC results revealed that the prostates of the CR rats exhibited a lower immune proinflammatory infiltrate level and a reduced expression of the NLRP3 inflammasome pathway, together with significantly reduced expressions of mesenchymal markers and the profibrotic factor TGFß1. Finally, by WB analysis, we observed a reduced expression of ERα, which is notoriously implicated in prostate stromal proliferation, and increased expressions of SOD1 and Hsp70, both exerting protective effects against oxidative stress. Overall, these data suggest that CR brings potential benefits to prostatic tissues as it reduces the physiological immune-inflammatory processes and the tissue remodeling caused by aging.


Assuntos
Envelhecimento , Restrição Calórica , Inflamação , Proteína 3 que Contém Domínio de Pirina da Família NLR , Próstata , Ratos Sprague-Dawley , Animais , Masculino , Restrição Calórica/métodos , Ratos , Próstata/metabolismo , Próstata/patologia , Envelhecimento/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Fator de Crescimento Transformador beta1/metabolismo , Inflamassomos/metabolismo , Hiperplasia Prostática/metabolismo , Hiperplasia Prostática/patologia , Estresse Oxidativo , Fibrose , Superóxido Dismutase-1/metabolismo
3.
Int J Mol Sci ; 24(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38003541

RESUMO

Prostate cancer (PCa) is the second most common male cancer. Its incidence derives from the interaction between modifiable and non-modifiable factors. The progression of prostate cancer into a more aggressive phenotype is associated with chronic inflammation and increased ROS production. For their biological properties, some phytochemicals from fruits and vegetable emerge as a promise strategy for cancer progression delay. These bioactive compounds are found in the highest amounts in peels and seeds. Poncirus trifoliata (L.) Raf. (PT) has been widely used in traditional medicine and retains anti-inflammatory, anti-bacterial, and anticancer effects. The seeds of P. trifoliata were exhaustively extracted by maceration with methanol as the solvent. The cell proliferation rate was performed by MTT and flow cytometry, while the apoptosis signals were analyzed by Western blotting and TUNEL assay. P. trifoliata seed extract reduced LNCaP and PC3 cell viability and induced cell cycle arrest at the G0/G1phase and apoptosis. In addition, a reduction in the AKT/mTOR pathway has been observed together with the up-regulation of stress-activated MAPK (p38 and c-Jun N-terminal kinase). Based on the study, the anti-growth effects of PT seed extract on prostate tumor cells give indications on the potential of the phytochemical drug for the treatment of this type of cancer. However, future in-depth studies are necessary to identify which components are mainly responsible for the anti-neoplastic response.


Assuntos
Poncirus , Neoplasias da Próstata , Masculino , Humanos , Receptores Androgênicos , Poncirus/química , Pontos de Checagem do Ciclo Celular , Neoplasias da Próstata/metabolismo , Apoptose , Sementes/metabolismo , Linhagem Celular Tumoral , Extratos Vegetais/farmacologia , Proliferação de Células , Ciclo Celular
4.
Int J Mol Sci ; 24(20)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37894755

RESUMO

Wound-healing delay is one of the major problems of type 2 diabetes, representing also a clinical emergency in non-healing chronic wounds. Natural antioxidants show interesting wound-healing properties, including those extracted from waste derived from olive oil production. Olive mill wastewater is one of the main by-products of the olive oil-making process, and it is rich in high-value secondary metabolites, mainly hydroxytyrosol. We proposed an eco-friendly extraction method, employing both ultrasound-assisted and Soxhlet techniques and ethanol as a solvent, to recover valuable molecules from Roggianella cv (Olea europea L.) olive mill wastewater, which was further entrapped in a pectin polymer via an enzymatic reaction using porcine pancreatic lipase. Pectin, in combination with other substances, promoted and accelerated wound healing and demonstrated good potential to produce a biomedical conjugate for wound treatment. The antioxidant activity of the extracts and conjugate were evaluated against lipophilic (IC50 equal to 0.152 mg mL-1) and hydrophilic (IC50 equal to 0.0371 mg mL-1) radical species as well as the in vitro cytotoxicity via NRU, h-CLAT, and a wound-healing scratch assay and assessment. The pectin conjugate did not exert hemolytic effects on the peripheral blood, demonstrating interesting wound-healing properties due to its ability to stimulate cell proliferation in a dose-dependent manner.


Assuntos
Diabetes Mellitus Tipo 2 , Olea , Animais , Suínos , Águas Residuárias , Pectinas/farmacologia , Azeite de Oliva , Antioxidantes/farmacologia
5.
Int J Mol Sci ; 24(23)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38069431

RESUMO

Alpha-lipoic acid (ALA) is a natural antioxidant dithiol compound, exerting antiproliferative and antimetastatic effects in various cancer cell lines. In our study, we demonstrated that ALA reduces the cell growth of prostate cancer cells LNCaP and DU-145. Western blot results revealed that in both cancer cells, ALA, by upregulating pmTOR expression, reduced the protein content of two autophagy initiation markers, Beclin-1 and MAPLC3. Concomitantly, MTT assays showed that chloroquine (CQ) exposure, a well-known autophagy inhibitor, reduced cells' viability. This was more evident for treatment using the combination ALA + CQ, suggesting that ALA can reduce cells' viability by inhibiting autophagy. In addition, in DU-145 cells we observed that ALA affected the oxidative/redox balance system by deregulating the KEAP1/Nrf2/p62 signaling pathway. ALA decreased ROS production, SOD1 and GSTP1 protein expression, and significantly reduced the cytosolic and nuclear content of the transcription factor Nrf2, concomitantly downregulating p62, suggesting that ALA disrupted p62-Nrf2 feedback loop. Conversely, in LNCaP cells, ALA exposure upregulated both SOD1 and p62 protein expression, but did not affect the KEAP1/Nrf2/p62 signaling pathway. In addition, wound-healing, Western blot, and immunofluorescence assays evidenced that ALA significantly reduced the motility of LNCaP and DU-145 cells and downregulated the protein expression of TGFß1 and vimentin and the deposition of fibronectin. Finally, a soft agar assay revealed that ALA decreased the colony formation of both the prostate cancer cells by affecting the anchorage independent growth. Collectively, our in vitro evidence demonstrated that in prostate cancer cells, ALA reduces cell growth and counteracts both migration and invasion. Further studies are needed in order to achieve a better understanding of the underlined molecular mechanisms.


Assuntos
Neoplasias da Próstata , Ácido Tióctico , Masculino , Humanos , Ácido Tióctico/farmacologia , Ácido Tióctico/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Superóxido Dismutase-1/metabolismo , Movimento Celular , Autofagia , Neoplasias da Próstata/tratamento farmacológico , Estresse Oxidativo
6.
Int J Mol Sci ; 23(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35216501

RESUMO

In this study, actively-targeted (CD44-receptors) and dual stimuli (pH/redox)-responsive lipid-polymer nanoparticles were proposed as a delivery vehicle of doxorubicin hydrochloride in triple negative breast cancer cell lines. A phosphatidylcholine lipid film was hydrated with a solution of oxidized hyaluronic acid and doxorubicin, chosen as model drug, followed by a crosslinking reaction with cystamine hydrochloride. The obtained spherical nanoparticles (mean diameter of 30 nm) were found to be efficiently internalized in cancer cells by a receptor-mediated endocytosis process, and to modulate the drug release depending on the pH and redox potential of the surrounding medium. In vitro cytotoxicity assays demonstrated the safety and efficacy of the nanoparticles in enhancing the cytotoxic effect of the free anticancer drug, with the IC50 values being reduced by two and three times in MDA-MB-468 and MDA-MB-231, respectively. The combination of self-assembled phospholipid molecules with a polysaccharide counterpart acting as receptor ligand, and stimuli-responsive chemical moieties, was carried out on smart multifunctional nanoparticles able to actively target breast cancer cells and improve the in vitro anticancer activity of doxorubicin.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/química , Doxorrubicina/farmacologia , Lipídeos/química , Lipossomos/química , Nanopartículas/química , Polissacarídeos/química , Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos/efeitos dos fármacos , Endocitose/efeitos dos fármacos , Feminino , Humanos , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/metabolismo , Concentração de Íons de Hidrogênio , Tamanho da Partícula
7.
Int J Mol Sci ; 23(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36361674

RESUMO

Cancer is one of the largest causes of mortality in the world, and due to its incidence, the discovery of novel anticancer drugs is of great importance. Many successful anticancer drugs used in clinical practices are derived from natural products. The genus Santolina is a group of species distributed in the Mediterranean area and used in traditional medicine for their biological properties. The aim of this work was to investigate, for the first time, the multi-target biological potential of Italian Santolina pinnata in relation to their chemical profile, by which an interesting natural source of valuable phytochemicals endowed with anticancer and anti-inflammatory features could be assessed. n-Hexane (EHSP) and methanol (EMSP) extracts were investigated by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) and ultra-high-performance liquid chromatography (UHPLC), respectively. Anti-proliferative activity was analyzed on MCF-7 and MDA-MB-231 breast cancer cells, as well as on non-tumorigenic MCF-10A cells, by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. Apoptotic death was assessed by comet assay. Cell motility and invasive features were examined in highly invasive MDA-MB-231 by wound-healing scratches, while, in both breast cancer cell lines, by gel-zymography experiments. The anti-inflammatory potential was analyzed by nitric oxide (NO) production and the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) staining experiments in bacterial lipopolysaccharides (LPS) which stimulated RAW 264.7 cells. EHSP and EMSP extracts exhibited anticancer activity against breast cancer cells, promoting apoptotic death, as well as decreasing cell migration and invasive behaviours. The highest activity (IC50 of 15.91 µg/mL) was detected against MDA-MB-231 cells, a highly invasive breast cancer cell line. Both extracts were also able to promote anti-inflammatory effects (IC50 values ranging from 27.5 to 61.14 µg/mL), as well as to reduce NO levels by inducing inhibitory effects on NF-κB nuclear translocation in LPS-stimulated RAW 264.7 cells. The different biological behaviours found between the extracts could be related to their different chemical compositions. Herein, the multi-target biological potential of S. pinnata in inducing antitumor and anti-inflammatory effects was comprehensively demonstrated. These findings will provide important stepping-stones for further investigations and may lead to the development of highly effective S. pinnata extract-based treatments for breast cancer and inflammatory processes.


Assuntos
Antineoplásicos , Asteraceae , Neoplasias da Mama , Camundongos , Animais , Humanos , Feminino , Células RAW 264.7 , Lipopolissacarídeos/farmacologia , NF-kappa B/metabolismo , Neoplasias da Mama/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Cromatografia Gasosa-Espectrometria de Massas , Asteraceae/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Antineoplásicos/farmacologia
8.
Am J Pathol ; 189(3): 687-698, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30610844

RESUMO

Although in past decades the adipokine leptin and its own receptor have been considered as significant cancer biomarkers, their potential involvement in human testicular seminoma growth and progression remains unexplored. Here, we showed that the expression of leptin and its receptor was significantly higher in human testicular seminoma compared with normal adult testis. Human seminoma cell line TCam-2 also expressed leptin along with the long and short isoforms of leptin receptor, and in response to leptin treatment showed enhanced activation of its downstream effectors. In line with these results, leptin stimulation significantly increased the proliferation and migration of TCam-2 cells. Treatment of TCam-2 cells with the peptide Leu-Asp-Phe-Ile (LDFI), a full leptin-receptor antagonist, completely reversed the leptin-mediated effects on cell growth and motility as well as reduced the expression of several leptin-induced target genes. More importantly, the in vivo xenograft experiments showed that LDFI treatment markedly decreased seminoma tumor growth. Interestingly, LDFI-treated tumors showed reduced levels of the proliferation marker Ki-67 as well as decreased expression of leptin-regulated genes. Taken together, these data identify, for the first time, leptin as a key factor able to affect testicular seminoma behavior, highlighting leptin receptor as a potential target for novel potential treatments in this type of cancer.


Assuntos
Leptina/farmacocinética , Proteínas de Neoplasias/agonistas , Peptídeos/farmacologia , Receptores para Leptina/agonistas , Seminoma/tratamento farmacológico , Neoplasias Testiculares/tratamento farmacológico , Adulto , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Leptina/química , Masculino , Camundongos , Camundongos Nus , Proteínas de Neoplasias/metabolismo , Peptídeos/química , Receptores para Leptina/metabolismo , Seminoma/metabolismo , Seminoma/patologia , Neoplasias Testiculares/metabolismo , Neoplasias Testiculares/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
9.
J Cell Physiol ; 233(12): 9526-9537, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29943815

RESUMO

The mechanisms by which varicocele affects fertility remain undetermined. Vitamin A (all-trans retinoic acid [ATRA]) is required for fertility and normal spermatogenesis; however, the mechanisms driving its action are not defined yet. Previously, we demonstrated in varicocele sperm a reduced RARα expression and that ATRA influence sperm performance. To further define vitamin A significance in male gamete and in the physiopathology of varicocele, we tested for the first time ATRA action on human sperm metabolism and antioxidant defense systems. Evaluating triglycerides content and lipase activity, in normal sperm ATRA had a lipid lowering effect, which was not observed in varicocele sperm. The modulation of the glucose-6-phosphate dehydrogenase activity, concomitantly with a reduction of the glucose content, highlight an ATRA role on glucose metabolism. ATRA induced the superoxide dismutase (SOD) and glutathione transferase activities, while it reduced the malondialdehyde and reactive oxygen species (ROS) production both in healthy and varicocele sperm. Interestingly, SOD1 and SOD2 have been localized in the acrosome and midpiece, glutathione- S-transferase omega 2 (GSTO2) in the acrosome, equatorial, and subacrosomial regions. SOD1, SOD2, and GSTO2 levels were significantly lower in varicocele with respect to healthy sperm. Herein, we discovered that ATRA treatment was able to reprogram sperm metabolism toward that of the capacitation status. The retinol protected human sperm from ROS damage enhancing the antioxidant enzymes activity, providing evidence toward the efficacy of vitamin A as therapeutic tool in improving sperm quality. These novel findings further confirm the importance of vitamin A in male fertility adding new insights into the retinoids complex biological framework.


Assuntos
Infertilidade Masculina/complicações , Infertilidade Masculina/fisiopatologia , Estresse Oxidativo/efeitos dos fármacos , Espermatozoides/metabolismo , Espermatozoides/patologia , Tretinoína/farmacologia , Varicocele/complicações , Varicocele/fisiopatologia , Antioxidantes/metabolismo , Glucose/metabolismo , Glucosefosfato Desidrogenase/metabolismo , Glutationa Transferase/metabolismo , Humanos , Lipase/metabolismo , Masculino , Malondialdeído/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Espermatozoides/efeitos dos fármacos , Espermatozoides/enzimologia , Superóxido Dismutase/metabolismo , Triglicerídeos/metabolismo
10.
Am J Pathol ; 186(5): 1328-39, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26968343

RESUMO

Leydig cell tumors are the most frequent interstitial neoplasms of the testis with increased incidence in recent years. They are hormonally active and are considered one of the steroid-secreting tumors. Although usually benign, the malignant phenotype responds poorly to conventional chemotherapy or radiation, highlighting the need to identify new therapeutic targets for treatment. Here, we identified a novel glucocorticoid-mediated mechanism that controls cell growth in Leydig cell tumors. We found that a synthetic glucocorticoid receptor agonist, dexamethasone, reduces cell proliferation in rat Leydig tumor cells by decreasing the expression and the enzymatic activity of the estrogen-producing enzyme aromatase. This inhibitory effect relies on the ability of activated glucocorticoid receptor to regulate the aromatase gene transcriptional activity through the recruitment of nuclear receptor corepressor protein and silencing mediator of retinoid and thyroid hormone receptors to a newly identified putative glucocorticoid responsive element within the aromatase promoter II. Our in vivo studies reveal a reduction of tumor growth, after dexamethasone treatment, in animal xenografts. Tumors from dexamethasone-treated mice exhibit a decrease in the expression of the proliferation marker Ki-67 and the aromatase enzyme. Our data demonstrate that activated glucocorticoid receptor, decreasing aromatase expression, induces Leydig tumor regression both in vitro and in vivo, suggesting that glucocorticoid receptor might be a potential target for the therapy of Leydig cell tumors.


Assuntos
Inibidores da Aromatase/farmacologia , Aromatase/metabolismo , Dexametasona/farmacologia , Tumor de Células de Leydig/patologia , Receptores de Glucocorticoides/antagonistas & inibidores , Neoplasias Testiculares/patologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Xenoenxertos , Tumor de Células de Leydig/tratamento farmacológico , Masculino , Camundongos Nus , Transplante de Neoplasias , Neoplasias Testiculares/tratamento farmacológico
11.
J Anat ; 227(4): 541-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26241668

RESUMO

In the last decade, the study of human sperm anatomy, at molecular level, has revealed the presence of several nuclear protein receptors. In this work, we examined the expression profile and the ultrastructural localization of liver receptor homolog-1 (LRH-1) in human spermatozoa. We evidenced the presence of the receptor by Western blotting and real time-RT-PCR. Furthermore, we used immunogold electron microscopy to investigate the sperm anatomical regions containing LRH-1. The receptor was mainly located in the sperm head, whereas its expression was reduced in the neck and across the tail. Interestingly, we observed the presence of LRH-1 in different stages of testicular germ cell development by immunohistochemistry. In somatic cells, it has been suggested that the LRH-1 pathway is tightly linked with estrogen signaling and the important role of estradiol has been widely studied in sperm cells. To assess the significance of LRH-1 in male gametes and to deepen understanding of the role of estrogens in these cells, we investigated important sperm features such as motility, survival and capacitation. Spermatozoa were treated with 10 nm estradiol and the inhibition of LRH-1 reversed the estradiol stimulatory action. From our data, we discovered that human spermatozoa can be considered a new site of expression for LRH-1, evidencing its role in sperm motility, survival and cholesterol efflux. Furthermore, we may presume that in spermatozoa the LRH-1 effects are closely integrated with the estrogen signaling, supporting LRH-1 as a downstream effector of the estradiol pathway on some sperm functions.


Assuntos
Estrogênios/metabolismo , Regulação da Expressão Gênica , RNA/genética , Receptores Citoplasmáticos e Nucleares/genética , Espermatozoides/metabolismo , Western Blotting , Diferenciação Celular , Sobrevivência Celular , Humanos , Imuno-Histoquímica , Masculino , Reação em Cadeia da Polimerase em Tempo Real , Receptores Citoplasmáticos e Nucleares/biossíntese , Transdução de Sinais , Motilidade dos Espermatozoides , Espermatozoides/citologia
12.
Reproduction ; 147(5): 589-98, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24429393

RESUMO

The study of androgens involved in male reproduction has been object of intense efforts, while their reported action on human male gametes is limited. We previously described the presence of androgen receptor (AR) in sperm with a role related to the modulation of the PI3K pathway. In the present study, we investigated the expression of AR and its ultrastructural location in normal sperm as well as in spermatozoa obtained from varicocele patients. We observed a reduced AR content in varicocele sperm with respect to healthy sperm by western blot analysis and transmission electron microscopy (TEM). The ultrastructural location of AR was detected mainly on the head membrane as well as in the nucleus, neck, and mitochondria. Influence of dihydrotestosterone (DHT) treatment on cholesterol efflux was increased in normal sperm, while it was reduced or absent in varicocele sperm. To better understand DHT/AR significance in human male gametes, we evaluated triglyceride content and lipase, acyl-CoA dehydrogenase, and glucose-6-phosphate dehydrogenase activities upon DHT treatment. The metabolic outcome glimpsed in normal sperm was an increased metabolic rate, while 'varicocele' sperm economized energy. Taken together, our results reveal DHT and AR as new players in sperm endocrinology, indicating that varicocele sperm may have difficulty in switching to the capacitated status. A decreased AR expression and a consequent reduced responsiveness to DHT in sperm may represent molecular mechanisms involved in the pathophysiology of varicocele leading to male infertility. This study revealed new detrimental effects of varicocele on sperm at the molecular level.


Assuntos
Receptores Androgênicos/fisiologia , Espermatozoides/patologia , Varicocele/patologia , Varicocele/fisiopatologia , Células Cultivadas , Di-Hidrotestosterona/farmacologia , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/fisiologia , Glucose/metabolismo , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/fisiologia , Masculino , Transdução de Sinais/fisiologia , Capacitação Espermática/efeitos dos fármacos , Capacitação Espermática/fisiologia , Espermatozoides/efeitos dos fármacos , Espermatozoides/ultraestrutura
13.
Anat Cell Biol ; 57(1): 119-128, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38098241

RESUMO

Glucocorticoids play a physiologic role in the adult male reproductive functions, modulating gonadal steroid synthesis and spermatogenesis, through the glucocorticoid receptor (GR). The expression of GR has been described in several key testicular cell types, including somatic cells and early germ cell populations. Nothing is known on GR in human spermatozoa. Herein, we explored the GR expression and its possible role in normal and testicular varicocele semen samples from volunteer donors. After semen parameter evaluation by macro- and microscopic analysis, samples were centrifuged; then spermatozoa and culture media were recovered for further investigations. By western blotting and immunofluorescence analyses we evidenced for the first time in spermatozoa the presence of GR-D3 isoform which was reduced in sperm from varicocele patients. By treating sperm with the synthetic glucocorticoid dexamethasone (DEXA), we found that survival, motility, capacitation, and acrosome reaction were increased in both healthy and varicocele samples. GR involvement in mediating DEXA effects, was confirmed by using the GR inhibitor mifepristone (M2F). Worthy, we also discovered that sperm secretes different cortisol amounts depending on its physio-pathological status, suggesting a defence mechanism to escape the immune system attach in the female genital tract thus maintaining the immune-privilege as in the testis. Collectively, our data suggests a role for glucocorticoids in determining semen quality and function, as well as in participating on sperm immune defensive mechanisms. The novelty of this study may be beneficial and needs to take into account in artificial insemination/drug discovery aimed to enhancing sperm quality.

14.
Life (Basel) ; 14(4)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38672713

RESUMO

Partial nephrectomy (PN) is the primary surgical method for renal tumor treatment, typically involving clamping the renal artery during tumor removal, leading to warm ischemia and potential renal function impairment. Off-clamp approaches have been explored to mitigate organ damage, yet few results have emerged about the possible effects on hemoglobin loss. Most evidence comes from retrospective studies using propensity score matching, known to be sensitive to PS model misspecification. The energy balancing weights (EBW) method offers an alternative method to address bias by focusing on balancing all the characteristics of covariate distribution. We aimed to compare on- vs. off-clamp techniques in PN using EB-weighted retrospective patient data. Out of 333 consecutive PNs (275/58 on/off-clamp ratio), the EBW method achieved balanced variables, notably tumor anatomy and staging. No significant differences were observed in the operative endpoints between on- and off-clamp techniques, although off-clamp PNs showed slight reductions in hemoglobin loss and renal function decline, albeit with slightly higher perioperative blood loss. Our findings support previous evidence, indicating comparable surgical outcomes between standard and off-clamp procedures, with the EBW method proving effective in balancing baseline variables in observational studies comparing interventions.

15.
Life (Basel) ; 13(2)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36836943

RESUMO

Many studies have suggested that SARS-CoV-2, directly or indirectly, can affect the male reproductive system, although the underlined mechanisms have not been completely elucidated yet. The purpose of this review is to provide a summary of the current data concerning the impact of SARS-CoV-2 infection on the male urogenital tract, with a particular emphasis on the testes and male fertility. The main data regarding the morphological alterations in the testes emerged from autoptic studies that revealed interstitial congestion, micro thrombosis, reduction of Sertoli, Leydig, and germinal cells, infiltrated immune cells, and atrophic seminiferous tubules consistent with orchitis. Furthermore, men with severe infection exhibit sperm parameter alterations, together with abnormalities of the hypothalamic-pituitary-testis axis, strongly suggesting that SARS-CoV-2 could increase the risk of male infertility. However, despite the inadequate number of longitudinal studies, spermatogenesis and sex hormone imbalance seem to improve after infection resolution. The yet unresolved question is whether the virus acts in a direct or/and indirect manner, as discordant data related to its presence in the testis and semen have been reported. Regardless of the direct effect, it has been postulated that the cytokine storm and the related local and systemic inflammation could strongly contribute to the onset of testis dysfunction, leading to male infertility. Therefore, multicentric and longitudinal studies involving a large number of patients are needed to understand the real impact of SARS-CoV-2 infection on male reproduction.

16.
Antioxidants (Basel) ; 12(2)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36829848

RESUMO

To date, it is known that antioxidants protect cells from damage caused by oxidative stress and associated with pathological conditions. Several studies have established that inflammation is a state that anticipates the neoplastic transformation of the prostate. Although many experimental and clinical data have indicated the efficacy of antioxidants in preventing this form of cancer, the discrepant results, especially from recent large-scale randomized clinical trials, make it difficult to establish a real role for antioxidants in prostate tumor. Despite these concerns, clinical efficacy and safety data show that some antioxidants still hold promise for prostate cancer chemoprevention. Although more studies are needed, in this review, we briefly describe the most common antioxidants that have shown benefits in preclinical and clinical settings, focusing our attention on synthesizing the advances made so far in prostate cancer chemoprevention using antioxidants as interesting molecules for the challenges of future therapies.

17.
Biomedicines ; 11(10)2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37893116

RESUMO

One of the major goals in the advancement of basic cancer research focuses on the development of new anticancer therapies. To understand the molecular mechanisms of cancer progression, acquired drug resistance, and the metastatic process, the use of preclinical in vitro models that faithfully summarize the properties of the tumor in patients is still a necessity. The tumor is represented by a diverse group of cell clones, and in recent years, to reproduce in vitro preclinical tumor models, monolayer cell cultures have been supplanted by patient-derived xenograft (PDX) models and cultured organoids derived from the patient (PDO). These models have proved indispensable for the study of the tumor microenvironment (TME) and its interaction with tumor cells. Prostate cancer (PCa) is the most common neoplasia in men in the world. It is characterized by genomic instability and resistance to conventional therapies. Despite recent advances in diagnosis and treatment, PCa remains a leading cause of cancer death. Here, we review the studies of the last 10 years as the number of papers is growing very fast in the field. We also discuss the discovered limitations and the new challenges in using the organoid culture system and in using PDXs in studying the prostate cancer phenotype, performing drug testing, and developing anticancer molecular therapies.

18.
Life (Basel) ; 14(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38255667

RESUMO

Cancer has been described as a risk factor for greater susceptibility to SARS-CoV-2 infection and severe COVID-19, mainly for patients with metastatic disease. Conversely, to that reported for most solid and hematological malignancies, the few available clinical studies reported that the infection did not increase the risk of death in renal cancer patients. The expression on proximal tubular renal cells of the key players in cellular viral uptake, ACE2, TMPRSS2, and NRP1, seems to be the mechanism for the direct kidney injury seen in patients with COVID-19. Interestingly, data from The Cancer Genome Atlas and experimental analyses on various renal cancer cell lines demonstrated that the above-reported receptors/cofactors are maintained by renal cancer cells. However, whether SARS-CoV-2 infection directly kills renal cancer cells or generates enhanced immunogenicity is a question worth investigating. In addition, some researchers have further addressed the topic by studying the expression and prognostic significance of gene signatures related to SARS-CoV-2 infection in renal cancer patients. The emerging data highlights the importance of better understanding the existence of a link between renal cancer and COVID-19 since it could lead to the identification of new prognostic factors and the development of new therapeutic targets in the management of renal cancer patients.

19.
Artigo em Inglês | MEDLINE | ID: mdl-36834186

RESUMO

Cardiac lipotoxicity plays an important role in the pathogenesis of obesity-related cardiovascular disease. The flavonoid quercetin (QUE), a nutraceutical compound that is abundant in the "Mediterranean diet", has been shown to be a potential therapeutic agent in cardiac and metabolic diseases. Here, we investigated the beneficial role of QUE and its derivative Q2, which demonstrates improved bioavailability and chemical stability, in cardiac lipotoxicity. To this end, H9c2 cardiomyocytes were pre-treated with QUE or Q2 and then exposed to palmitate (PA) to recapitulate the cardiac lipotoxicity occurring in obesity. Our results showed that both QUE and Q2 significantly attenuated PA-dependent cell death, although QUE was effective at a lower concentration (50 nM) when compared with Q2 (250 nM). QUE decreased the release of lactate dehydrogenase (LDH), an important indicator of cytotoxicity, and the accumulation of intracellular lipid droplets triggered by PA. On the other hand, QUE protected cardiomyocytes from PA-induced oxidative stress by counteracting the formation of malondialdehyde (MDA) and protein carbonyl groups (which are indicators of lipid peroxidation and protein oxidation, respectively) and intracellular ROS generation, and by improving the enzymatic activities of catalase and superoxide dismutase (SOD). Pre-treatment with QUE also significantly attenuated the inflammatory response induced by PA by reducing the release of key proinflammatory cytokines (IL-1ß and TNF-α). Similar to QUE, Q2 (250 nM) also significantly counteracted the PA-provoked increase in intracellular lipid droplets, LDH, and MDA, improving SOD activity and decreasing the release of IL-1ß and TNF-α. These results suggest that QUE and Q2 could be considered potential therapeutics for the treatment of the cardiac lipotoxicity that occurs in obesity and metabolic diseases.


Assuntos
Miócitos Cardíacos , Quercetina , Humanos , Quercetina/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fator de Necrose Tumoral alfa/metabolismo , Estresse Oxidativo , Inflamação/metabolismo , Superóxido Dismutase/metabolismo
20.
Cells ; 12(7)2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-37048116

RESUMO

Cardiac lipotoxicity is an important contributor to cardiovascular complications during obesity. Given the fundamental role of the endoplasmic reticulum (ER)-resident Selenoprotein T (SELENOT) for cardiomyocyte differentiation and protection and for the regulation of glucose metabolism, we took advantage of a small peptide (PSELT), derived from the SELENOT redox-active motif, to uncover the mechanisms through which PSELT could protect cardiomyocytes against lipotoxicity. To this aim, we modeled cardiac lipotoxicity by exposing H9c2 cardiomyocytes to palmitate (PA). The results showed that PSELT counteracted PA-induced cell death, lactate dehydrogenase release, and the accumulation of intracellular lipid droplets, while an inert form of the peptide (I-PSELT) lacking selenocysteine was not active against PA-induced cardiomyocyte death. Mechanistically, PSELT counteracted PA-induced cytosolic and mitochondrial oxidative stress and rescued SELENOT expression that was downregulated by PA through FAT/CD36 (cluster of differentiation 36/fatty acid translocase), the main transporter of fatty acids in the heart. Immunofluorescence analysis indicated that PSELT also relieved the PA-dependent increase in CD36 expression, while in SELENOT-deficient cardiomyocytes, PA exacerbated cell death, which was not mitigated by exogenous PSELT. On the other hand, PSELT improved mitochondrial respiration during PA treatment and regulated mitochondrial biogenesis and dynamics, preventing the PA-provoked decrease in PGC1-α and increase in DRP-1 and OPA-1. These findings were corroborated by transmission electron microscopy (TEM), revealing that PSELT improved the cardiomyocyte and mitochondrial ultrastructures and restored the ER network. Spectroscopic characterization indicated that PSELT significantly attenuated infrared spectral-related macromolecular changes (i.e., content of lipids, proteins, nucleic acids, and carbohydrates) and also prevented the decrease in membrane fluidity induced by PA. Our findings further delineate the biological significance of SELENOT in cardiomyocytes and indicate the potential of its mimetic PSELT as a protective agent for counteracting cardiac lipotoxicity.


Assuntos
Miócitos Cardíacos , Palmitatos , Palmitatos/toxicidade , Palmitatos/metabolismo , Miócitos Cardíacos/metabolismo , Estresse Oxidativo , Ácidos Graxos/metabolismo , Mitocôndrias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA